Article

Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential.

Department of Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
Blood (Impact Factor: 9.78). 05/2006; 107(8):3131-7. DOI: 10.1182/blood-2005-08-3412
Source: PubMed

ABSTRACT It is a longstanding question which bone marrow-derived cell seeds the thymus and to what level this cell is committed to the T-cell lineage. We sought to elucidate this issue by examining gene expression, lineage potential, and self-renewal capacity of the 2 most immature subsets in the human thymus, namely CD34+ CD1a- and CD34+ CD1a+ thymocytes. DNA microarrays revealed the presence of several myeloid and erythroid transcripts in CD34+ CD1a- thymocytes but not in CD34+ CD1a+ thymocytes. Lineage potential of both subpopulations was assessed using in vitro colony assays, bone marrow stroma cultures, and in vivo transplantation into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. The CD34+ CD1a- subset contained progenitors with lymphoid (both T and B), myeloid, and erythroid lineage potential. Remarkably, development of CD34+ CD1a- thymocytes toward the T-cell lineage, as shown by T-cell receptor delta gene rearrangements, could be reversed into a myeloid-cell fate. In contrast, the CD34+ CD1a+ cells yielded only T-cell progenitors, demonstrating their irreversible commitment to the T-cell lineage. Both CD34+ CD1a- and CD34+ CD1a+ thymocytes failed to repopulate NOD/SCID mice. We conclude that the human thymus is seeded by multipotent progenitors with a much broader lineage potential than previously assumed. These cells resemble hematopoietic stem cells but, by analogy with murine thymocytes, apparently lack sufficient self-renewal capacity.

0 Bookmarks
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major histocompatibility complex class II (MHC-II) molecules bind to and display antigenic peptides on the surface of antigen-presenting cells (APCs). In the absence of infection, MHC-II molecules on APCs present self-peptides and interact with CD4(+) T cells to maintain tolerance and homeostasis. In the thymus, self-peptides bind to MHC-II molecules expressed by defined populations of APCs specialized for the different steps of T-cell selection. Cortical epithelial cells present peptides for positive selection, whereas medullary epithelial cells and dendritic cells are responsible for peptide presentation for negative selection. However, few data are available on the peptides presented by MHC molecules in the thymus. Here, we apply mass spectrometry to analyze and identify MHC-II-associated peptides from five fresh human thymus samples. The data show a diverse self-peptide repertoire, mostly consisting of predicted MHC-II high binders. Despite technical limitations preventing single cell population analyses of peptides, these data constitute the first direct assessment of the HLA-II-bound peptidome and provide insight into how this peptidome is generated and how it drives T-cell repertoire formation. This article is protected by copyright. All rights reserved.
    European Journal of Immunology 05/2013; · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cells originate from hematopoietic stem cells (HSCs) in the bone marrow but complete their development in the thymus. HSCs give rise to a variety of non-renewing hematopoietic progenitors, among which a rare subset migrates to the thymus via the bloodstream. The earliest T-cell progenitors identified in the thymus are not T-lineage restricted but possess the ability to give rise to cells of many different lineages. Alternative lineage potentials are gradually lost as progenitors progress toward later developmental stages. Here, we review the early developmental events that might be involved in T-cell lineage fate determination, including the properties of possible thymus-settling progenitors, their homing into the thymus, and their T-cell lineage specification and commitment.
    Immunological Reviews 11/2010; 238(1):12-22. · 12.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.
    The Journal of Immunology 10/2006; 177(6):3711-20. · 5.52 Impact Factor

Full-text (2 Sources)

View
55 Downloads
Available from
May 26, 2014