A Wnt- and beta -catenin-dependent pathway for mammalian cardiac myogenesis.

Center for Cardiovascular Development and Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2003; 100(10):5834-9. DOI: 10.1073/pnas.0935626100
Source: PubMed

ABSTRACT Acquisition of a cardiac fate by embryonic mesodermal cells is a fundamental step in heart formation. Heart development in frogs and avians requires positive signals from adjacent endoderm, including bone morphogenic proteins, and is antagonized by a second secreted signal, Wnt proteins, from neural tube. By contrast, mechanisms of mesodermal commitment to create heart muscle in mammals are largely unknown. In addition, Wnt-dependent signals can involve either a canonical beta-catenin pathway or other, alternative mediators. Here, we tested the involvement of Wnts and beta-catenin in mammalian cardiac myogenesis by using a pluripotent mouse cell line (P19CL6) that recapitulates early steps for cardiac specification. In this system, early and late cardiac genes are up-regulated by 1% DMSO, and spontaneous beating occurs. Notably, Wnt3A and Wnt8A were induced days before even the earliest cardiogenic transcription factors. DMSO induced biochemical mediators of Wnt signaling (decreased phosphorylation and increased levels of beta-catenin), which were suppressed by Frizzled-8Fc, a soluble Wnt antagonist. DMSO provoked T cell factor-dependent transcriptional activity; thus, induction of Wnt proteins by DMSO was functionally coupled. Frizzled-8Fc inhibited the induction of cardiogenic transcription factors, cardiogenic growth factors, and sarcomeric myosin heavy chains. Likewise, differentiation was blocked by constitutively active glycogen synthase kinase 3beta, an intracellular inhibitor of the Wntbeta-catenin pathway. Conversely, lithium chloride, which inhibits glycogen synthase kinase 3beta, and Wnt3A-conditioned medium up-regulated early cardiac markers and the proportion of differentiated cells. Thus, Wntbeta-catenin signaling is activated at the inception of mammalian cardiac myogenesis and is indispensable for cardiac differentiation, at least in this pluripotent model system.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Islet 1 (ISL1), a marker of second heart field progenitors, plays a crucial role in cardiomyocyte differentiation and proliferation. However, little is known about transcriptional regulating mechanisms on Isl1 gene expression. Recent studies have demonstrated that Wnt/β-catenin signaling regulates Isl1 expression during heart development. However, the detailed mechanisms still remain unclear. In the present study performed during differentiation of P19CL6 into cardiomyocytes, we explored the underlying regulating mechanisms on Wnt/β-catenin-mediated Isl1 expression after we first confirmed that Wnt/β-catenin signaling promoted cardiomyocyte differentiation partly through Isl1 activation. We found a novel TCF/LEF1 binding site that was located 2300 bp upstream of the Isl1 ATG. Furthermore, Wnt/β-catenin signaling upregulated histone H3K9 acetylation on TCF/LEF1 binding sites on the Isl1 promoter, resulting in upregulation of Isl1 expression. This Wnt-mediated H3K9 acetylation on the Isl1 promoter was modulated by the acetyltransferase CREB-binding protein (CBP), instead of p300, through interaction with β-catenin. Collectively, these results suggest that in early stages of cardiomyocyte differentiation Wnt/β-catenin signaling promotes Isl1 expression via two ways: a novel TCF/LEF1 binding site and H3K9 acetylation conducted by CBP on the Isl1 promoter. To our knowledge, this is the first study reporting Wnt/β-catenin-regulated H3K9 acetylation on promoters of its target genes. And this study gives new insights into transcriptional regulating mechanisms of Wnt-mediated Isl1 expression during cardiomyocyte differentiation.
    Molecular and Cellular Biochemistry 03/2014; · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adult mammalian heart predominantly comprises myocytes, fibroblasts, endothelial cells, smooth muscle cells and epicardial cells arranged in a precise three dimensional framework. Following cardiac injury the spatial arrangement of cells is disrupted as different populations of cells are recruited to the heart in a temporally regulated manner. The alteration of the cellular composition of the heart after cardiac injury thus enables different phenotypes of cells to interact with each other in a spatio-temporal dependent manner. It can be argued that the integrated study of such cellular interactions rather than the examination of single populations of cells can provide more insight into the biology of cardiac repair especially at an organ wide level. Many signaling systems undoubtedly mediate such cross talk between cells after cardiac injury. The Wnt/β-catenin system plays an important role during cardiac development and disease and here we describe how cell populations in the heart after cardiac injury mediate their interactions via Wnt/β-catenin pathway, determine how such interactions can affect a cardiac repair response and finally suggest an integrated approach to study cardiac cellular interactions.
    Cardiovascular Research 03/2014; · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiomyocytes (CMs) differentiated from human embryonic stem cells (hESCs) are a promising and potentially unlimited cell source for myocardial repair and regeneration. Recently, multiple methodologies-primarily based on the optimization of growth factors-have been described for efficient cardiac differentiation of hESCs. However, the role of extracellular matrix (ECM) signaling in CM differentiation has not yet been explored fully. This study examined the role of ECM signaling in the efficient generation of CMs from both H7 and H9 ESCs. The hESCs were differentiated on ECM substrates composed of a range of fibronectin (FN) and laminin (LN) ratios and gelatin and evaluated by the fluorescence activated cell scanning (FACS) analysis on day 14. Of the ECM substrates examined, the 70:30 FN:LN reproducibly generated the greatest numbers of CMs from both hESC lines. Moreover, the LN receptor integrin β4 (ITGB4) and FN receptor integrin β5 (ITGB5) genes, jointly with increased phosphorylated focal adhension kinase and phosphorylated extracellular signal-regulated kinases (p-ERKs), were up-regulated over 13-fold in H7 and H9 cultured on 70:30 FN:LN compared with gelatin. Blocking studies confirmed the role of all these molecules in CM specification, suggesting that the 70:30 FN:LN ECM promotes highly efficient differentiation of CMs through the integrin-mediated MEK/ERK signaling pathway. Lastly, the data suggest that FN:LN-induced signaling utilizes direct cell-to-cell signaling from distinct ITGB4(+) and ITGB5(+) cells.
    BioResearch open access. 08/2014; 3(4):150-61.


Available from