Inactivation of White Spot Syndrome Virus (WSSV) by normal rabbit serum: Implications for the role of the envelope protein VP28 in WSSV infection of shrimp

Wageningen University, Wageningen, Gelderland, Netherlands
Virus Research (Impact Factor: 2.83). 07/2006; 118(1-2):55-61. DOI: 10.1016/j.virusres.2005.11.011
Source: PubMed

ABSTRACT White Spot Syndrome Virus (WSSV) is a highly pathogenic and prevalent virus affecting crustacea. A number of WSSV envelope proteins, including vp28, have been proposed to be involved in viral infectivity based on the ability of specific antibodies to attenuate WSSV-induced mortality in vivo. In the present study, a series of monoclonal and polyclonal antibodies targeting vp28 were tested for their ability to neutralize WSSV infectivity, with the purpose of identifying epitopes potentially involved in vp28-mediated infection of shrimp. Surprisingly, when used as protein A-purified immunoglobulin, none of the antibodies tested were capable of inhibiting WSSV infectivity. This included one polyclonal preparation that has been previously shown to inactivate WSSV, when used as whole rabbit serum. Moreover, strong inactivation of WSSV by some rabbit sera was observed, in a manner independent of anti-vp28 antibodies. These results underscore the problems associated with using heterogeneous reagents (e.g. whole rabbit antiserum) in viral neutralization experiments aimed at defining proteins involved in infection by WSSV. In light of this, the potential of anti-vp28 antibodies to specifically neutralize WSSV should be reconsidered.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.
    Biochemical and Biophysical Research Communications 09/2008; 372(4):902-6. DOI:10.1016/j.bbrc.2008.05.152 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microarray technique was used to analyze the gene expression profiles of shrimp when they were challenged by WSSV and heat-inactivated Vibrio anguillarum, respectively. At 6 h post challenge (HPC), a total of 806 clones showed differential expression profile in WSSV-challenged samples, but not in Vibrio-challenged samples. The genes coding energy metabolism enzyme and structure protein were the most downregulated elements in 6 h post WSSV-challenged (HPC-WSSV) tissues. However, a total of 155 clones showed differential expression in the Vibrio-challenged samples, but not in WSSV-challenged samples. Serine-type endopeptidase and lysosome-related genes were the most upregulated elements in tissues 6 h post Vibrio challenge (HPC-Vibrio). Totally, 188 clones showed differential expression in both 6 and 12 HPC-WSSV and HPC-Vibrio samples. Most of the differentially expressed genes (185/188) were downregulated in the samples of 12 HPC-WSSV, whereas upregulated in the samples at 6 and 12 HPC-Vibrio and 6 HPC-WSSV. The expression profiles of three differentially expressed genes identified in microarray hybridization were analyzed in hemocytes, lymphoid organ, and hepatopancreas of shrimp challenged by WSSV or Vibrio through real-time PCR. The results further confirmed the microarray hybridization results. The data will provide great help for us in understanding the immune mechanism of shrimp responding to WSSV or Vibrio.
    Marine Biotechnology 07/2008; 10(6):664-75. DOI:10.1007/s10126-008-9105-x · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A fluorescent quantitative PCR (FQ-PCR) assay utilizing SYBR green I dye is described for quantitation of white spot syndrome virus (WSSV) particles isolated from infected crayfish, Cambarus clarkii. For this assay, a primer set was designed which amplifies, with high efficiency and specificity, a 129bp target sequence within ORF167 of the WSSV genome. Conveniently, WSSV particles can be added into the FQ-PCR assay with a simple and convenient method to release its DNA. To establish the basis for an in vitro neutralization test, primary cultures of shrimp cells were challenged with WSSV that had been incubated with a polyclonal anti-WSSV serum or with control proteins. The number of WSSV particles released from the cells after these treatments were assayed by FQ-PCR. This test may serve as a method to screen monoclonal antibody pools or recombinant antibody pools for neutralizing activity prior to in vivo animal experiments.
    Journal of Virological Methods 01/2008; 146(1-2):96-103. DOI:10.1016/j.jviromet.2007.06.009 · 1.88 Impact Factor