Article

Imatinib mesylate (STI571) abrogates the resistance to doxorubicin in human K562 chronic myeloid leukemia cells by inhibition of BCR/ABL kinase-mediated DNA repair.

Department of Molecular Genetics, University of Lodz, Banacha 12/16 street, 90-237 Lodz, Poland.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis (Impact Factor: 4.44). 02/2006; 603(1):74-82. DOI: 10.1016/j.mrgentox.2005.10.010
Source: PubMed

ABSTRACT Imatinib mesylate (STI571), a specific inhibitor of BCR/ABL tyrosine kinase, exhibits potent antileukemic effects in the treatment of chronic myelogenous leukemia (CML). However, the precise mechanism by which inhibition of BCR/ABL activity results in pharmacological responses remains unknown. BCR/ABL-positive human K562 CML cells resistant to doxorubicin (K562DoxR) and their sensitive counterparts (K562DoxS) were used to determine the mechanism by which the STI571 inhibitor may overcome drug resistance. K562 wild type cells and CCRF-CEM lymphoblastic leukemia cells without BCR/ABL were used as controls. The STI571 specificity was examined by use of murine pro-B lymphoid Baf3 cells with or without BCR/ABL kinase expression. We examined kinetics of DNA repair after cell treatment with doxorubicin in the presence or absence of STI571 by the alkaline comet assay. The MTT assay was used to estimate resistance against doxorubicin and Western blot analysis with Crk-L antibody was performed to evaluate BCR/ABL kinase inhibition by STI571. We provide evidence that treatment of CML-derived BCR/ABL-expressing leukemia K562 cells with STI571 results in the inhibition of DNA repair and abrogation of the resistance of these cells to doxorubicin. We found that doxorubicin-resistant K562DoxR cells exhibited accelerated kinetics of DNA repair compared with doxorubicin-sensitive K562DoxS cells. Inhibition of BCR/ABL kinase in K562DoxR cells with 1 microM STI571 decreased the kinetics of DNA repair and abrogated drug resistance. The results suggest that STI571-mediated inhibition of BCR/ABL kinase activity can affect the effectiveness of the DNA-repair pathways, which in turn may enhance drug sensitivity of leukemia cells.

0 Followers
 · 
1,277 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite rapid progress in anticancer drug development and improvement in clinical outcomes, the survival rate for many types of cancer is still unacceptably low. Therefore, it is crucial to discover novel anticancer drugs to both prevent and treat the disease. In recent years, the advent of combinatorial chemistry allows the design and parallel synthesis of millions of small compounds that have drug-like properties. In vitro high throughput screening of such compound libraries has allowed the identification of many new drug candidates that may be further evaluated for their efficacy and mechanism of action. The overall objective of this study was to identify small molecule compounds as candidates for anti-cancer drug development. We first used cell proliferation and cytotoxicity assays to identify compounds exhibiting anti-cancer activity in vitro in a leukemia cell line (K562). Six top compounds selected from the initial screening of a library of 2,560 compounds were further evaluated in multiple cancer cell lines to rank the drug candidates. The top candidate was further investigated to elucidate the molecular mechanism underlying its anticancer activity. Our studies suggest that this piperazine derivative effectively (GI50 = 0.06-0.16 μM) inhibits cancer cell proliferation and induces caspase-dependent apoptosis via inhibiting multiple cancer signaling pathways including the PI3K/AKT, the Src family kinases and the BCR-ABL pathways.
    American Journal of Translational Research 01/2013; 5(6):622-633. · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin (DOX) is an effective anthracycline antibiotic against a wide spectrum of tumors and hematological malignancies. It mainly interacts with DNA, but can also generate reactive oxygen species (ROS), which damage cell components. Unfortunately, numerous side effects, such as severe cardiotoxicity and bone-marrow suppression, limit its use. To reduce this obstacle and improve its pharmacokinetics, we conjugated DOX to transferrin (TRF), a human plasma protein. In our study, we compared the effect of DOX and the doxorubicin-transferrin conjugate (DOX-TRF) on human leukemic lymphoblasts (CCRF-CEM), and on normal peripheral blood mononuclear cells (PBMC). In parallel, experiments were carried out on two human chronic myeloid leukemia (CML) cell lines derived from K562 cells, of which one was sensitive and the other resistant to doxorubicin (K562/DOX). By use of the alkaline comet assay, the effect of the agents on the induction of DNA damage in normal human cells and human leukemia cells was determined. Oxidative and alkylating DNA damage were assayed by a slightly modified comet assay that included the use of the DNA-repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg). To investigate whether DNA breaks are the result of apoptosis, we examined the induction of DNA fragmentation visualized as oligosomal ladders after simple agarose electrophoresis under neutral conditions. Modifications of the genome induced by the different drugs were analyzed following assessment of the cell-cycle phase. The DOX-TRF conjugate caused more DNA damage than the free drug, the degree of DNA fragmentation being dependent on the duration of treatment and the cell type analyzed. With neutral agarose electrophoresis we showed that the test compounds caused the formation of a characteristic DNA-ladder pattern. Furthermore, the DOX-TRF conjugate generated a higher percentage of apoptotic cells in the subG1 fraction and blocked more cells in the G2/M phase of the cell cycle than did free DOX. In summary, both agents induced DNA damage in cancer cells, but the DOX-TRF conjugate generated more genotoxic effects and apoptosis than the unconjugated drug.
    Mutation Research/Genetic Toxicology and Environmental Mutagenesis 09/2014; 771. DOI:10.1016/j.mrgentox.2014.06.007 · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1,5-Anhydro-6-deoxy-methane-sulfamido-d-glucitol (FCP5) is a functionalized carbohydrate containing functional groups that render it potentially therapeutically useful. According to our concept of ‘functional carb-pharmacophores’ (FCPs) incorporation of the methanesulfonamido pharmacophore to 1,5 glucitol could create a therapeutically useful compound. Our previous studies revealed that FCP5 was cytotoxic to cancer cells. Therefore, in this work we assessed the cytotoxic mechanisms of FCP5 in four cancer cell lines – HeLa, LoVo, A549 and MCF-7, with particular focus on DNA damage and repair. A broad spectrum of methods, including comet assay with modifications, DNA repair enzyme assay, plasmid relaxation assay, and DNA fragmentation assay, were used. We also checked the potential for FCP5 to induce apoptosis. The results show that FCP5 can induce DNA strand breaks as well as oxidative modifications of DNA bases. DNA lesions induced by FCP5 were not entirely repaired in HeLa cells and DNA repair kinetics differs from other cell lines. Results from molecular docking and plasmid relaxation assay suggest that FCP5 binds to the major groove of DNA with a preference for adenosine–thymine base pair sequences and directly induces DNA strand breaks. Thus, FCP5 may represent a novel lead for the design of new major groove-binding compounds. The results also confirmed the validity of functional carb-pharmacophores as a new source of innovative drugs.
    Chemico-Biological Interactions 12/2014; 227. DOI:10.1016/j.cbi.2014.12.023 · 2.98 Impact Factor