Cyanobacterial psbA families in Anabaena and Synechocystis encode trace, constitutive and UVB-induced D1 isoforms.

Department of Biology, Mount Allison University, Sackville, NB, Canada E4L1G7.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 02/2006; 1757(1):47-56. DOI: 10.1016/j.bbabio.2005.11.002
Source: PubMed

ABSTRACT Cyanobacteria cope with UVB induced photoinhibition of Photosystem II by regulating multiple psbA genes to boost the expression of D1 protein (in Synechocystis sp. PCC6803), or to exchange the constitutive D1:1 protein to an alternate D1:2 isoform (in Synechococcus sp. PCC7942). To define more general patterns of cyanobacterial psbA expression, we applied moderately photoinhibitory UVB to Anabaena sp. PCC7120 and tracked the expression of its five psbA genes. psbAI, encoding a D1:1 protein isoform characterized by a Gln130, represented the majority of the psbA transcript pool under control conditions. psbAI transcripts decreased upon UVB treatment but the total psbA transcript pool increased 3.5 fold within 90 min as a result of sharply increased psbAII, psbAIV and psbAIII transcripts encoding an alternate D1:2 protein isoform characterized by Glu130, similar to that of Synechococcus. Upon UVB treatment the relaxation of flash induced chlorophyll fluorescence showed a characteristic acceleration of a decay phase likely associated with the exchange from the D1:1 protein isoform encoded by psbAI to the alternate D1:2 isoform encoded by psbAIV, psbAII and psbAIII. Throughout the UVB treatment the divergent psbA0 made only a trace contribution to the total psbA transcript pool. This suggests a similarity to the divergent psbAI gene from Synechocystis, whose natural expression we demonstrate for the first time at a trace level similar to psbA0 in Anabaena. These trace-expressed psbA genes in two different cyanobacteria raise questions concerning the functions of these divergent genes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyanobacteria have multiple psbA genes encoding PsbA, the D1 reaction center protein of the Photosystem II complex which bears together with PsbD, the D2 protein, most of the cofactors involved in electron transfer reactions. The thermophilic cyanobacterium Thermosynechococcus elongatus has three psbA genes differently expressed depending on the environmental conditions. Among the 344 residues constituting each of the 3 possible PsbA variants there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2 and 27 between PsbA2 and PsbA3. In this review, we summarize the changes already identified in the properties of the redox cofactors depending on the D1 variant constituting Photosystem II in T. elongatus. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reaction center of photosystem II is susceptible to photodamage. In particular the D1 protein located in the photosystem II core has a rapid, light-dependent turnover termed the photosystem II repair cycle that, under illumina- tion, degrades and resynthesizes D1 protein to limit accumu- lation of photodamaged photosystem II. Most studies concerning the effects of UVB (280-320 nm) on this cycle have been on cyanobacteria or specific phytoplankton species rather than on natural communities of phytoplankton. Dur- ing a 5-year multidisciplinary project on the effects of UV radiation (200-400 nm) on natural systems, the effects of UVB on the D1 protein of natural phytoplankton communities were assessed. This review provides an overview of photo- inhibitory effects of light on cultured and natural phytoplank- ton, with an emphasis on the interrelation of UVB exposure, D1 protein degradation and the repair of photosystem II through D1 resynthesis. Although the UVB component of the solar spectrum contributes to the primary photoinactivation of photosystem II, we conclude that, in natural communities, inhibition of the rate of the photosystem II repair cycle is a more important influence of UVB on primary productivity. Indeed, exposing tropical and temperate phytoplankton communities to supplemented UVB had more inhibitory effect on D1 synthesis than on the D1 degradation process itself. However, the rate of net D1 damage was faster for the tropical communities, likely because of the effects of high ambient light and water temperature on mechanisms of protein degradation and synthesis.
    International Congress Series 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ferredoxins (Fed) function as electron carrier in a wide range of metabolic and regulatory reactions. It is not clear yet, whether the multiplicity of Fed proteins is also reflected in functional multiplicity in photosynthetic organisms. We addressed the biological function of the bacterial-type Fed, Fed7 in the cyanobacterium Synechocystis sp. PCC 6803. The expression of fed7 is induced under low CO2 conditions (LC) and further enhanced by additional high light (HL) treatment. These conditions are considered as promoting photooxidative stress, and prompted us to investigate the biological function of Fed7 under these conditions. Loss of Fed7 did not inhibit growth of the mutant strain Δfed7 but significantly modulated photosynthesis parameters when the mutant was grown under LC and HL conditions. Characteristics of the Δfed7 mutant included elevated chlorophyll and photosystem I levels as well as reduced abundance and activity of photosystem II. Transcriptional profiling of the mutant under LC conditions demonstrated changes in gene regulation of the carbon concentrating mechanism and photoprotective mechanisms such as the Flv2/4 electron valve, the PSII dimer stabilizing protein Sll0218, and chlorophyll biosynthesis. We conclude that the function of Fed7 is connected to coping with photooxidative stress, possibly by constituting a redox-responsive regulatory element in photoprotection. In photosynthetic eukaryotes domains homologous to Fed7 are exclusively found in chloroplast DnaJ-like proteins that are likely involved in remodeling of regulator protein complexes. It is conceivable that the regulatory function of Fed7 evolved in cyanobacteria and was recruited by Viridiplantae as the controller for the chloroplast DnaJ-like proteins.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014