Article

Fluorescence in situ hybridization using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable-water biofilms.

Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom.
Applied and Environmental Microbiology (Impact Factor: 3.95). 02/2006; 72(1):848-53. DOI: 10.1128/AEM.72.1.848-853.2006
Source: PubMed

ABSTRACT Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply.

0 Bookmarks
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence in situ hybridization (FISH) using fluorochrome-labeled DNA oligonucleotide probes has been successfully applied for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. However, application of the standard FISH protocols to visualize anammox bacteria in biofilms from a laboratory-scale wastewater reactor produced only weak signals. Increased signal intensity was achieved either by modifying the standard FISH protocol, using peptide nucleic acid probes (PNA FISH), or applying horse radish peroxidase- (HRP-) labeled probes and subsequent catalyzed reporter deposition (CARD-FISH). A comparative analysis using anammox biofilm samples and suspended anammox biomass from different laboratory wastewater bioreactors revealed that the modified standard FISH protocol and the PNA FISH probes produced equally strong fluorescence signals on suspended biomass, but only weak signals were obtained with the biofilm samples. The probe signal intensities in the biofilm samples could be enhanced by enzymatic pre-treatment of fixed cells, and by increasing the hybridization time of the PNA FISH protocol. CARD-FISH always produced up to four-fold stronger fluorescent signals but unspecific fluorescence signals, likely caused by endogenous peroxidases as reported in several previous studies, compromised the results. Interference of the development of fluorescence intensity with endogenous peroxidases was also observed in cells of aerobic ammonium oxidizers like Nitrosomonas europea, and sulfate-reducers like Desulfobacter postgatei. Interestingly, no interference was observed with other peroxidase-positive microorganisms, suggesting that CARD-FISH is not only compromised by the mere presence of peroxidases. Pre-treatment of cells to inactivate peroxidase with HCl or autoclavation/pasteurization failed to inactive peroxidases, but H(2)O(2) significantly reduced endogenous peroxidase activity. However, for optimal inactivation, different H(2)O(2) concentrations and incubation time may be needed, depending on nature of sample and should therefore always be individually determined for each study.
    Journal of microbiological methods 05/2009; 78(2):119-26. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of biofilms in drinking water distribution systems (DWDS) can cause pipe degradation, changes in the water organoleptic properties but the main problem is related to the public health. Biofilms are the main responsible for the microbial presence in drinking water (DW) and can be reservoirs for pathogens. Therefore, the understanding of the mechanisms underlying biofilm formation and behavior is of utmost importance in order to create effective control strategies. As the study of biofilms in real DWDS is difficult, several devices have been developed. These devices allow biofilm formation under controlled conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc), chemical (type and amount of nutrients, type of disinfectant and residuals, organic and inorganic particles, ions, etc) and biological (composition of microbial community - type of microorganism and characteristics) parameters, ensuring that the operational conditions are similar as possible to the DWDS conditions in order to achieve results that can be applied to the real scenarios. The devices used in DW biofilm studies can be divided essentially in two groups, those usually applied in situ and the bench top laboratorial reactors. The selection of a device should be obviously in accordance with the aim of the study and its advantages and limitations should be evaluated to obtain reproducible results that can be transposed into the reality of the DWDS. The aim of this review is to provide an overview on the main reactors used in DW biofilm studies, describing their characteristics and applications, taking into account their main advantages and limitations.
    Water research. 06/2014; 62C:63-87.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humans have changed their environment to survive and to achieve a safer and more comfortable life. For example, drinking water and wastewater infrastructures are indispensable for civilized societies to flourish and to prevent water-borne infectious diseases. However, excessive loading on environments might disturb microbial ecosystems, resulting in outbreaks of pathogenic microbes and the expansion of infectious diseases. Clarifying the relationship between environmental alterations and changes in microbial ecosystems is thus important to prevent further outbreaks of infectious diseases. The present study aims to understand the links between the following factors: environmental alterations; ecosystem disturbance and the occurrence of infectious disease; and impact on society. We focus on legionellosis and nontuberculous mycobacterial diseases from the viewpoint of their environmental linkage. While Legionella spp. are ubiquitous in aquatic environments, Legionella pneumophila often increases in anthropogenic environments, such as cooling towers or spas, and can cause outbreaks of legionellosis. Recently, travel-associated Legionnaires’ disease has caused concern in many countries. The numbers of patients infected with nontuberculous Mycobacteria (NTM) have increased worldwide since the 1990s. Disturbances to microbial ecosystems caused by changes in water usage might be one cause of NTM diseases. Clarifying the dynamics of Legionella pneumophila and NTM in aquatic environments should help prevent outbreaks of diseases associated with these bacteria. KeywordsAquatic environment–Environmental alteration– Legionella –Microbial ecosystem–Nontuberculous Mycobacteria
    Ecological Research 26(5):893-896. · 1.55 Impact Factor

Full-text (2 Sources)

View
12 Downloads
Available from
Jun 4, 2014