Fluorescence In Situ Hybridization Using Peptide Nucleic Acid Probes for Rapid Detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in Potable-Water Biofilms

Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom.
Applied and Environmental Microbiology (Impact Factor: 3.67). 02/2006; 72(1):848-53. DOI: 10.1128/AEM.72.1.848-853.2006
Source: PubMed


Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply.

21 Reads
  • Source
    • "The problems connected to cultivation have increased the interest in culture-independent methods. Different microscopical methods have been applied to detect mycobacterial cells in animal and environmental originating samples [21]. The tendency of mycobacterial cells to clump may hinder accurate microscopic as well as cultivation based quantification of Mycobacterium cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mycobacterioses in animals cause economical losses and certain Mycobacterium avium subspecies are regarded as potential zoonotic agents. The evaluation of the zoonotic risk caused by M. avium subspecies requires information about the quantities of Mycobacterium strains in infected animals. Because M. avium subspecies in pig tissues are difficult or even impossible to quantify by culturing, we tested the suitability of a culture-independent real-time quantitative PCR (qPCR) assay for this purpose. Methods Mycobacterial DNA was extracted from porcine tissues by a novel method and quantified by Mycobacterium genus specific qPCR assay targeting the 16S rRNA gene. Results The response of the qPCR assay to the amount of M. avium subspecies avium mixed with porcine liver was linear in the range of approximately log105 to log107Mycobacterium cells per 1 g of liver. The assay was validated with three other M. avium subspecies strains. When the assay was applied to porcine lymph nodes with or without visible lesions related to Mycobacterium avium subspecies infections, around 104–107 mycobacterial genomes per gram of lymph nodes were detected. Conclusions The qPCR assay was found to be suitable for the quantification of Mycobacterium avium subspecies in porcine lymph nodes and liver.
    Acta Veterinaria Scandinavica 03/2013; 55(1):26. DOI:10.1186/1751-0147-55-26 · 1.38 Impact Factor
  • Source
    • "PNA molecules are DNA mimics that have the negatively charged sugar-phosphate backbone replaced by an achiral, neutral polyamide backbone formed by repetitive N-(2-aminoethyl) glycine units [16,17]. Although PNA lacks pentoses, specific hybridization between the PNA sequences and nucleic acid complementary sequences still occur according to the Watson-Crick rules [18,19]. The neutral PNA molecule characteristic is responsible for a higher thermal stability (high Tm) between PNA/DNA or PNA/RNA bonding, compared with the traditional DNA probes [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Triple therapy is the gold standard treatment for Helicobacter pylori eradication from the human stomach, but increased resistance to clarithromycin became the main factor of treatment failure. Until now, fastidious culturing methods are generally the method of choice to assess resistance status. In this study, a new genotypic method to detect clarithromycin resistance in clinical samples, based on fluorescent in situ hybridization (FISH) using a set of peptide nucleic acid probes (PNA), is proposed. The set of probes targeting the point mutations responsible for clarithromycin resistance was applied to H. pylori suspensions and showed 100% sensitivity and specificity (95% CI, 79.9-100 and 95% CI, 71.6-100 respectively). This method can also be amenable for application to gastric biopsy samples, as resistance to clarithromycin was also detected when histological slides were tested. The optimized PNA-FISH based diagnostic method to detect H. pylori clarithromycin resistance shown to be a very sensitive and specific method for the detection of clarithromycin resistance in the H. pylori smears and also proved to be a reliable method for the diagnosis of this pathogen in clinical samples and an alternative to existing plating methods.
    BMC Microbiology 05/2011; 11(1):101. DOI:10.1186/1471-2180-11-101 · 2.73 Impact Factor
  • Source
    • "A very low content of rRNA would result in insufficient brightness and cells would not be visualized. After cellular death the content of rRNA decreases significantly and therefore some authors have suggested that the emission of a bright signal is a good indication of cell viability [39,41,42]. The results obtained in the present study (Figure 1a) support that there is a correlation between the number of viable cells and the number of cells that bind to the PNA probe but further studies should be performed to correlate the PNA-positive cells and their metabolic state. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA) probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe), possibly leading to the formation of viable but noncultivable (VBNC) cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.
    BMC Microbiology 03/2011; 11(1):57. DOI:10.1186/1471-2180-11-57 · 2.73 Impact Factor
Show more