Differential exoprotease activities confer tumor-specific serum peptidome patterns.

Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 02/2006; 116(1):271-84. DOI: 10.1172/JCI26022
Source: PubMed

ABSTRACT Recent studies have established distinctive serum polypeptide patterns through mass spectrometry (MS) that reportedly correlate with clinically relevant outcomes. Wider acceptance of these signatures as valid biomarkers for disease may follow sequence characterization of the components and elucidation of the mechanisms by which they are generated. Using a highly optimized peptide extraction and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS-based approach, we now show that a limited subset of serum peptides (a signature) provides accurate class discrimination between patients with 3 types of solid tumors and controls without cancer. Targeted sequence identification of 61 signature peptides revealed that they fall into several tight clusters and that most are generated by exopeptidase activities that confer cancer type-specific differences superimposed on the proteolytic events of the ex vivo coagulation and complement degradation pathways. This small but robust set of marker peptides then enabled highly accurate class prediction for an external validation set of prostate cancer samples. In sum, this study provides a direct link between peptide marker profiles of disease and differential protease activity, and the patterns we describe may have clinical utility as surrogate markers for detection and classification of cancer. Our findings also have important implications for future peptide biomarker discovery efforts.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-resident proteases (TRPs) are regarded as informative biomarkers for staging cancer progression and evaluating therapeutic efficacy. Currently in the clinic, measurement of TRP is dependent on invasive biopsies, limiting their usefulness as monitoring tools. Here we identified circulating peptides naturally produced by TRPs, and evaluated their potential to monitor the efficacy of anti-tumor treatments. We established a mouse model for ovarian cancer development and treatment by orthotopic implantation of the human drug-resistant ovarian cancer cell line HeyA8-MDR, followed by porous silicon particle- or multistage vector (MSV) - enabled EphA2 siRNA therapy. Immunohistochemistry staining of tumor tissue revealed decreased expression of matrix metallopeptidase 9 (MMP-9) in mice exhibiting positive responses to MSV-EphA2 siRNA treatment. We demonstrated, via an ex vivo proteolysis assay, that C3f peptides can act as substrates of MMP-9, which cleaves C3f at L1311-L1312 into two peptides (SSATTFRL and LWENGNLLR). Importantly, we showed that these two C3f-derived fragments detected in serum were primarily generated by tumor-resident, but not blood-circulating, MMP-9. Our results suggested that the presence of the circulating fragments specially derived from the localized cleavage in tumor microenvironment can be used to evaluate therapeutic efficacy of anti-cancer treatment, assessed through a relatively noninvasive and user-friendly proteomics approach.
    Scientific Reports 03/2015; 5:9327. DOI:10.1038/srep09327 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood tests are needed to aid in the early detection of pancreatic ductal adenocarcinoma (PDAC), and monitoring pancreatitis development into malignancy especially in high risk patients. This study exhibits efforts and progress toward developing such blood tests, using electrospray-mass spectrometry (MS) serum profiling to distinguish patients with early-stage PDAC or pancreatitis from each other and from controls. Identification of significant serum mass peak differences between these individuals was performed using t tests and "leave one out" cross validation. Serum mass peak distributions of control individuals were distinguished from those of patients with chronic pancreatitis or early-stage PDAC with P values < 10(-15), and patients with chronic pancreatitis were distinguished from those of patients with early-stage PDAC with a P value < 10(-12). Serum from 12 out of 12 patients with PDAC stages I, IIA and IIB were blindly validated from controls. Tandem MS/MS identified a cancer phenotype with elements of PDAC involved in early-stage PDAC/control discrimination. These studies indicate electrospray-MS mass profiling can detect serum changes in patients with pancreatitis or early-stage pancreatic cancer. Such technology has the potential to aid in early detection of pancreatic cancer, biomarker development, and in monitoring development of pancreatitis into PDAC. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Cancer Letters 01/2015; 359(2). DOI:10.1016/j.canlet.2015.01.035 · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteases control complex tissue responses by modulating inflammation, cell proliferation and migration, and matrix remodeling. All these processes are orchestrated in cutaneous wound healing to restore the skin's barrier function upon injury. Altered protease activity has been implicated in the pathogenesis of healing impairments, and proteases are important targets in diagnosis and therapy of this pathology. Global assessment of proteolysis at critical turning points after injury will define crucial events in acute healing that might be disturbed in healing disorders. As optimal biospecimens, wound exudates contain an ideal proteome to detect extracellular proteolytic events, are non-invasively accessible, and can be collected at multiple time points along the healing process from the same wound in the clinics. In this study, we applied multiplexed Terminal Amine Isotopic Labeling of Substrates (TAILS) to globally assess proteolysis in early phases of cutaneous wound healing. By quantitative analysis of proteins and protein N termini in wound fluids from a clinically relevant pig wound model, we identified more than 650 proteins and discerned major healing phases through distinctive abundance clustering of markers of inflammation, granulation tissue formation, and re-epithelialization. TAILS revealed a high degree of proteolysis at all time points after injury by detecting almost 1300 N-terminal peptides in ~450 proteins. Quantitative positional proteomics mapped pivotal interdependent processing events in the blood coagulation and complement cascades, temporally discerned clotting and fibrinolysis during the healing process, and detected processing of complement C3 at distinct time points after wounding and by different proteases. Exploiting data on primary cleavage specificities, we related candidate proteases to cleavage events and revealed processing of the integrin adapter protein kindlin-3 by caspase-3, generating new hypotheses for protease-substrate relations in the healing skin wound in vivo. The data have been deposited to the ProteomeXchange Consortium with identifier PXD001198. Copyright © 2014, The American Society for Biochemistry and Molecular Biology.
    Molecular &amp Cellular Proteomics 12/2014; 14(2). DOI:10.1074/mcp.M114.043414 · 7.25 Impact Factor