Article

Soy diet worsens heart disease in mice.

Department of Medicine, Division of Cardiology, University of Colorado Health Sciences Center, Denver, Colorado, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 02/2006; 116(1):209-16. DOI: 10.1172/JCI24676
Source: PubMed

ABSTRACT We report that dietary modification from a soy-based diet to a casein-based diet radically improves disease indicators and cardiac function in a transgenic mouse model of hypertrophic cardiomyopathy. On a soy diet, males with a mutation in the alpha-myosin heavy chain gene progress to dilation and heart failure. However, males fed a casein diet no longer deteriorate to severe, dilated cardiomyopathy. Remarkably, their LV size and contractile function are preserved. Further, this diet prevents a number of pathologic indicators in males, including fibrosis, induction of beta-myosin heavy chain, inactivation of glycogen synthase kinase 3beta (GSK3beta), and caspase-3 activation.

Download full-text

Full-text

Available from: John P Konhilas, Dec 23, 2013
0 Followers
 · 
175 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease (CVD) remains the single leading cause of death in both men and women. A large proportion of the population with CVD will die with a diagnosis of congestive heart failure (CHF). It is becoming increasingly recognized that sex differences exist in the etiology, development, and outcome of CHF. For example, compared to male counterparts, women that present with CHF are typically older and have systolic cardiac function that is not impaired. Despite a growing body of literature addressing the underlying mechanisms of sex dimorphisms in cardiac disease, there remain significant inconsistencies reported in these studies. Given that the development of CHF results from the complex integration of genetic and nongenetic cues, it is not surprising that the elucidation and subsequent identification of molecular mechanisms remains unclear. In this review, key aspects of sex differences in CVD and CHF will be highlighted with an emphasis on some of the unanswered questions regarding these differences. The contention is presented that it becomes critical to reference cellular mechanisms within the context of each sex to better understand these sex dimorphisms.
    BioMed Research International 04/2010; 2010(1110-7243):562051. DOI:10.1155/2010/562051 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD.
    Neurobiology of Disease 08/2008; 31(1):1-19. DOI:10.1016/j.nbd.2008.03.008 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in myosin heavy chain (MyHC) can cause hypertrophic cardiomyopathy (HCM) that is characterized by hypertrophy, histopathology, contractile dysfunction, and sudden death. The signaling pathways involved in the pathology of HCM have not been elucidated, and an unresolved question is whether blocking hypertrophic growth in HCM may be maladaptive or beneficial. To address these questions, a mouse model of HCM was crossed with an antihypertrophic mouse model of constitutive activated glycogen synthase kinase-3beta (caGSK-3beta). Active GSK-3beta blocked cardiac hypertrophy in both male and female HCM mice. However, doubly transgenic males (HCM/GSK-3beta) demonstrated depressed contractile function, reduced sarcoplasmic (endo) reticulum Ca(2+)-ATPase (SERCA) expression, elevated atrial natriuretic factor (ANF) expression, and premature death. In contrast, female HCM/GSK-3beta double transgenic mice exhibited similar cardiac histology, function, and survival to their female HCM littermates. Remarkably, dietary modification from a soy-based diet to a casein-based diet significantly improved survival in HCM/GSK-3beta males. These findings indicate that activation of GSK-3beta is sufficient to limit cardiac growth in this HCM model and the consequence of caGSK-3beta was sexually dimorphic. Furthermore, these results show that blocking hypertrophy by active GSK-3beta in this HCM model is not therapeutic.
    AJP Heart and Circulatory Physiology 03/2007; 292(2):H838-45. DOI:10.1152/ajpheart.00615.2006 · 4.01 Impact Factor

Similar Publications