Ratjen, F. et al. Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J. Antimicrob. Chemother. 57, 306-311

University of Cologne, Köln, North Rhine-Westphalia, Germany
Journal of Antimicrobial Chemotherapy (Impact Factor: 5.31). 03/2006; 57(2):306-11. DOI: 10.1093/jac/dki461
Source: PubMed


Inhaled colistin is commonly used in patients with cystic fibrosis (CF), but only limited data are available to define its pharmacokinetic profile.
We performed a multicentre study in 30 CF patients to assess sputum, serum and urine concentrations after a single dose of 2 million units of colistin administered by inhalation. In a subgroup of patients we also compared the efficacy of two different nebulizers for administration of inhaled colistin.
Serum concentrations of colistin reached their maximum 1.5 h after inhalation and decreased thereafter. Serum concentrations were well below those previously reported for systemic application in all patients. A mean 4.3+/-1.3% of the inhaled dose was detected in urine. Elimination characteristics did not differ significantly from those previously reported for systemic application. A positive correlation was found between forced expiratory volume in 1 s (FEV1) in per cent predicted and both AUC and maximal colistin concentrations in serum (Cmax). Maximum sputum concentrations were at least 10 times higher than the MIC breakpoint for Pseudomonas aeruginosa proposed by the British Society for Antimicrobial Chemotherapy. Although sputum drug concentrations decreased after a peak at 1 h, the mean colistin concentrations were still above 4 mg/L after 12 h. No differences were seen in polymyxin E sputum concentrations, for CF patients between the two nebulizer systems.
The low systemic and high local concentrations of colistin support the use of inhaled colistin in CF patients infected with P. aeruginosa.

Download full-text


Available from: Hartmut Grasemann,
  • Source
    • "Although inhaled colistin has been used successfully to prevent and cure pulmonary infections in patients with cystic fibrosis colonized with Pseudomonas aeruginosa,2 there is limited data supporting effectiveness and tolerability of inhaled colistin therapy in non-cystic fibrosis patients with pneumonia due to MDR A. baumannii.3 We report here our experience with critically ill patients who received colistin inhalation therapy for the treatment of colistin-only-susceptible (COS) A. baumannii pneumonia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Colistin is used for the treatment of pneumonia associated with multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. However, the best route of administration and dosage is not known. We report our experience with aerosolized colistin in twelve patients with pneumonia caused by colistin-only-susceptible (COS) A. baumannii. Materials and Methods We retrospectively reviewed patients' medical records who were treated with aerosolized colistin for the treatment of pneumonia. Results Ten patients were treated only with aerosolized colistin inhalation and two patients received a 3-day course intravenous colistin, and then switched to colistin inhalation therapy. The median duration of aerosolized colistin therapy was 17 days (5-31 days). Four patients were treated only with aerosolized colistin, whereas 4 patients received concomitant glycopeptides, and 4 received concomitant levofloxacin or cefoperazone/sulbactam. At the end of the therapy, the clinical response rate and bacteriological clearance rate was 83% and 50%, respectively. Colistin-resistant strains were isolated from 3 patients after aerosolized colistin therapy; however, all of them showed favorable clinical response. The median interval between inhalation therapy and resistance was 7 days (range 5-19 days). Acute kidney injury developed in 3 patients. Two patients experienced Clostridium difficile associated diarrhea. One patient developed fever and skin rash after aerosolized colistin therapy. No patient developed neurotoxicity or bronchospasm. Conclusion Colistin inhalation therapy is deemed tolerable and safe, and could be beneficial as an adjuctive therapy for the management of pneumonia due to COS A. baumannii. However, the potential development of colistin resistance cannot be overlooked.
    Yonsei medical journal 01/2014; 55(1):118-25. DOI:10.3349/ymj.2014.55.1.118 · 1.29 Impact Factor
  • Source
    • "Third, the efficacy of aerosolized colistin in pneumonia might have contributed to the result. Pharmacokinetic studies have shown that a single inhalation of 2 million IU of colistin leads to high sputum concentrations of the drug even 12 h after the administration [12]. Guidelines by the American Thoracic Society and the Infectious Diseases Society of America mention that "aerosolized antibiotics may be considered as adjunctive therapy in patients with MDR gram-negatives who are not responding to systemic therapy" [13,14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Colistin is used as last treatment option for pneumonia associated with multidrug-resistant (MDR) Pseudomonas spp.. Literature about the best administration mode (inhalation versus parenteral treatment) is lacking. A retrospective study of 20 intensive care patients with a pneumonia associated with MDR P. aeruginosa receiving colistin sulphomethate sodium (Colistineb®) between 2007 and 2009 was performed. A strain was considered multidrug-resistant if it was resistant to at least 6 of the following antibiotics: piperacillin-tazobactam, ceftazidime, cefepime, meropenem, aztreonam, ciprofloxacin, and amikacin. The administration mode, predicted mortality based on the SAPS3 score, SOFA score at onset of the colistin treatment, clinical and microbiological response, and mortality during the episode of the infection were analysed. The non parametric Kruskal-Wallis and Fisher's Exact test were used for statistical analysis of respectively the predicted mortality/SOFA score and mortality rate. Six patients received colistin by inhalation only, 5 were treated only parenterally, and 9 by a combination of both administration modes. All patients received concomitant beta-lactam therapy. The mean predicted mortalities were respectively 72%, 68%, and 69% (p = 0.91). SOFA scores at the onset of the treatment were also comparable (p = 0.87). Clinical response was favorable in all patients receiving colistin by inhalation (6/6) and in 40% (2/5) of the patients receiving colistin parenterally (p = 0.06). In the patients with colistin administered both via inhalation and parenterally, clinical response was favorable in 78% of the patients (7/9) (p = 0.27 as compared to the treatment group receiving colistin only parenterally). When all patients with inhalation therapy were compared to the group without inhalation therapy, a favorable clinical response was present in respectively 87% and 40% (p = 0.06). In none of the patients, the Pseudomonas spp. was eradicated from the follow-up cultures.All patients in the parenterally treated group died. None of the patients receiving colistin by inhalation, and 3 of 9 patients of the combination group eventually died (p = 0.002 and p = 0.03 respectively as compared to the group receiving colistin only parenterally). Aerosolized colistin could be beneficial as adjunctive treatment for the management of pneumonia due to MDR P. aeruginosa.
    BMC Infectious Diseases 11/2011; 11(1):317. DOI:10.1186/1471-2334-11-317 · 2.61 Impact Factor
  • Source
    • "In addition, no study has been performed to assess the colistin concentrations achieved in the pulmonary epithelial lining fluid, which is the target site for antibiotics, in the treatment of pneumonia. The first study that evaluated the colistin pharmacokinetics postinhalation was conducted by Ratjen et al. [17] in patients with cystic fibrosis. In this multicenter study, a single dose of CMS (2 m. units) was administered via inhalation to assess sputum, serum, and urine concentrations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: Recent clinical studies performed in a large number of patients showed that colistin "forgotten" for several decades revived for the management of infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB) and had acceptable effectiveness and considerably less toxicity than that reported in older publications. Colistin is a rapidly bactericidal antimicrobial agent that possesses a significant postantibiotic effect against MDR Gram-negative pathogens, such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. The optimal colistin dosing regimen against MDR GNB is still unknown in the intensive care unit (ICU) setting. A better understanding of the pharmacokinetic-pharmacodynamic relationship of colistin is urgently needed to determine the optimal dosing regimen. Although pharmacokinetic and pharmacodynamic data in ICU patients are scarce, recent evidence shows that the pharmacokinetics/pharmacodynamics of colistimethate sodium and colistin in critically ill patients differ from those previously found in other groups, such as cystic fibrosis patients. The AUC:MIC ratio has been found to be the parameter best associated with colistin efficacy. To maximize the AUC:MIC ratio, higher doses of colistimethate sodium and alterations in the dosing intervals may be warranted in the ICU setting. In addition, the development of colistin resistance has been linked to inadequate colistin dosing. This enforces the importance of colistin dose optimization in critically ill patients. Although higher colistin doses seem to be beneficial, the lack of colistin pharmacokinetic-pharmacodynamic data results in difficulty for the optimization of daily colistin dose. In conclusion, although colistin seems to be a very reliable alternative for the management of life-threatening nosocomial infections due to MDR GNB, it should be emphasized that there is a lack of guidelines regarding the ideal management of these infections and the appropriate colistin doses in critically ill patients with and without multiple organ failure.
    Annals of Intensive Care 08/2011; 1(1):30. DOI:10.1186/2110-5820-1-30 · 3.31 Impact Factor
Show more