Article

Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter

Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 02/2006; 26(1):193-202. DOI: 10.1523/JNEUROSCI.2244-05.2006
Source: PubMed

ABSTRACT Recent evidence suggests that dopamine plays an important role in arousal, but the location of the dopaminergic neurons that may regulate arousal remains unclear. It is sometimes assumed that the dopaminergic neurons in the ventral tegmental area that project to the prefrontal cortex and striatum may regulate the state of arousal; however, the firing of these dopaminergic neurons does not correlate with overall levels of behavioral wakefulness. We identified wake-active dopaminergic neurons by combining immunohistochemical staining for Fos and tyrosine hydroxylase (TH) in awake and sleeping rats. Approximately 50% of the TH-immunoreactive (TH-ir) cells in the ventral periaqueductal gray matter (vPAG) expressed Fos protein during natural wakefulness or wakefulness induced by environmental stimulation, but none expressed Fos during sleep. Fos immunoreactivity was not seen in the substantia nigra TH-immunoreactive cells in either condition. Injections of 6-hydroxydopamine into the vPAG, which killed 55-65% of wake-active TH-ir cells but did not injure nearby serotoninergic cells, increased total daily sleep by approximately 20%. By combining retrograde and anterograde tracing, we showed that these wake-active dopaminergic cells have extensive reciprocal connections with the sleep-wake regulatory system. The vPAG dopaminergic cells may provide the long-sought ascending dopaminergic waking influence. In addition, their close relationship with the dorsal raphe nucleus will require reassessment of previous studies of the role of the dorsal raphe nucleus in sleep, because many of those experiments may have been confounded by the then-unrecognized presence of intermingled wake-active dopaminergic neurons.

0 Bookmarks
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Subcortical circuits mediating sleep-wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine-Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep-wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, HDs are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where electroencephalogram demonstrates abnormal function in cortical regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI shows instability of cortical networks in individuals with CFs. We propose that the inability to stabilize neural state due to disruptions in the sleep-wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders.
    Frontiers in Neurology 09/2014; 5:165. DOI:10.3389/fneur.2014.00165
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep/wake disturbance is a feature of almost all common age-related neurodegenerative diseases. Although the reason for this is unknown, it is likely that this inability to maintain sleep and wake states is in large part due to declines in the number and function of wake-active neurons, populations of cells that fire only during waking and are silent during sleep. Consistent with this, many of the brain regions that are most susceptible to neurodegeneration are those that are necessary for wake maintenance and alertness. In the present review, these wake-active populations are systematically assessed in terms of their observed pathology across aging and several neurodegenerative diseases, with implications for future research relating sleep and wake disturbances to aging and age-related neurodegeneration.
    SpringerPlus 12/2015; 4(1):25. DOI:10.1186/s40064-014-0777-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dorsal raphe nucleus (DRN) contains the largest group of serotonin-producing neurons in the brain and projects to regions controlling reward. Although pharmacological studies suggest that serotonin inhibits reward seeking, electrical stimulation of the DRN strongly reinforces instrumental behavior. Here, we provide a targeted assessment of the behavioral, anatomical, and electrophysiological contributions of serotonergic and nonserotonergic DRN neurons to reward processes. To explore DRN heterogeneity, we used a simultaneous two-vector knockout/optogenetic stimulation strategy, as well as cre-induced and cre-silenced vectors in several cre-expressing transgenic mouse lines. We found that the DRN is capable of reinforcing behavior primarily via nonserotonergic neurons, for which the main projection target is the ventral tegmental area (VTA). Furthermore, these nonserotonergic projections provide glutamatergic excitation of VTA dopamine neurons and account for a large majority of the DRN-VTA pathway. These findings help to resolve apparent discrepancies between the roles of serotonin versus the DRN in behavioral reinforcement.
    Cell Reports 09/2014; 8(6). DOI:10.1016/j.celrep.2014.08.037 · 7.21 Impact Factor