Weaning-induced expression of a milk-fat globule protein, MFG-E8, in mouse mammary glands, as demonstrated by the analyses of its mRNA, protein and phosphatidylserine-binding activity

Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
Biochemical Journal (Impact Factor: 4.4). 05/2006; 395(1):21-30. DOI: 10.1042/BJ20051459
Source: PubMed


A milk membrane glycoprotein, MFG-E8 [milk fat globule-EGF (epidermal growth factor) factor 8], is expressed abundantly in lactating mammary glands in stage- and tissue-specific manners, and has been believed to be secreted in association with milk fat globules. In the present paper, we describe further up-regulation of MFG-E8 in involuting mammary glands, where the glands undergo a substantial increase in the rate of epithelial cell apoptosis, and a possible role of MFG-E8 in mediating recognition and engulfment of apoptotic cells through its specific binding to PS (phosphatidylserine). Immunoblotting and RNA blotting analyses revealed that both MFG-E8 protein and MFG-E8 mRNA were markedly increased in mammary tissue within 3 days of either natural or forced weaning (pup withdrawal) of lactating mice. Using immunohistochemical analysis of the mammary tissue cryosections, the MFG-E8 signal was detected around the epithelium of such involuting mammary glands, but was almost undetectable at early- and mid-lactation stages, although strong signals were obtained for milk fat globules stored in the alveolar lumen. Some signals double positive to a macrophage differentiation marker, CD68, and MFG-E8 were detected in the post-weaning mammary tissue, although such double-positive signals were much smaller in number than the MFG-E8 single-positive ones. Total MFG-E8 in milk was also increased in the post-weaning mammary glands and, furthermore, the free MFG-E8 content in the post-weaning milk, as measured by in vitro PS-binding and apoptotic HC11 cell-binding activities, was much higher than that of lactation. In addition, the post-weaning milk enhanced the binding of apoptotic HC11 cells to J774 macrophages. Sucrose density-gradient ultracentrifugation analyses revealed that such enhanced PS-binding activity of MFG-E8 was present in membrane vesicle fractions (density 1.05-1.13 g/ml), rather than milk fat globule fractions. The weaning-induced MFG-E8 might play an important role in the recognition and engulfment of apoptotic epithelial cells by the neighbouring phagocytic epithelial cells in involuting mammary glands.

9 Reads
  • Source
    • "Finally, in contrast to Beclin 1 ECD, the C2 domain of MFG-E8 exhibited a strong preference for PS-enriched liposome (Supplementary information, Figure S5B). The result of this control experiment is consistent with previous reports 26, 27 and supports the validity of results derived from our liposome binding assays. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Beclin 1 gene is a haplo-insufficient tumor suppressor and plays an essential role in autophagy. However, the molecular mechanism by which Beclin 1 functions remains largely unknown. Here we report the crystal structure of the evolutionarily conserved domain (ECD) of Beclin 1 at 1.6 Å resolution. Beclin 1 ECD exhibits a previously unreported fold, with three structural repeats arranged symmetrically around a central axis. Beclin 1 ECD defines a novel class of membrane-binding domain, with a strong preference for lipid membrane enriched with cardiolipin. The tip of a surface loop in Beclin 1 ECD, comprising three aromatic amino acids, acts as a hydrophobic finger to associate with lipid membrane, consequently resulting in the deformation of membrane and liposomes. Mutation of these aromatic residues rendered Beclin 1 unable to stably associate with lipid membrane in vitro and unable to fully rescue autophagy in Beclin 1-knockdown cells in vivo. These observations form an important framework for deciphering the biological functions of Beclin 1.
    Cell Research 03/2012; 22(3):473-89. DOI:10.1038/cr.2012.24 · 12.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammary gland and epithelial cells are unique to mammals and are under the control of lactogenic hormones such as prolactin. Recent findings indicated that major components of milk fat globule membrane (MFGM) are under the control of lactogenic hormones, and that the major components butyrophilin and xanthine oxidoreductase are indispensable for milk fat secretion. Further, prolactin signaling is negatively controlled by two highly related protein tyrosine phosphatases, PTP1B and TC-PTP. Milk fat globule EGF factor 8 (MFG-E8) is one of the major components of MFGM and is upregulated during lactation. MFG-E8 is further upregulated in the involuting mammary gland. MFG-E8 on exosome-like membrane vesicles in the milk recovered from post-weaning but not lactating mammary glands exhibits higher binding activity to phosphatidylserine and apoptotic mammary epithelial cells, and serves as a link between apoptotic mammary epithelial cells and phagocytes. Recent reports using MFG-E8 deficient mice support the view that MFG-E8 is indispensable for eliminating apoptotic mammary epithelial cells during involution.
    Bioscience Biotechnology and Biochemistry 10/2006; 70(9):2019-27. DOI:10.1271/bbb.60142 · 1.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipocytes are now recognized as endocrine cells secreting adipocytokines, regulating multiple metabolic pathways. In this study, we addressed secretion of microvesicles by 3T3-L1 adipocytes. We found that MFG-E8, one of the exosomal proteins, was present in the microvesicles and was distributed in the sucrose density fractions with 1.13-1.20 g/ml, which has been reported for exosomes. Several integral, cytosolic, and nuclear proteins such as caveolin-1, c-Src kinase, and heat shock protein 70 were also found to be microvesicle components. Unexpectedly, adiponectin was also substantially distributed in the microvesicle fractions. Furthermore, proteomic analysis of the microvesicles revealed that many other proteins such as extracellular matrix-related proteins were also present. Microvesicles secreted by 3T3-L1 adipocytes exhibited heterogeneity in size and comprised both smaller exosome-like and larger membrane vesicles as revealed by electron microscopy. Milk fat globule-epidermal growth factor 8 (MFG-E8)-associated adiposomes exhibited binding activity toward phosphatidylserine and apoptotic cells. MFG-E8 in the microvesicles was reduced when cultured in the low-glucose medium or cultured in the high-glucose medium with antioxidant N-acetyl cysteine. Insulin and TNF-alpha also up-regulated MFG-E8 in the microvesicles. Moreover, MFG-E8 was strongly up-regulated in the hypertrophic adipose tissue, predominantly in adipocyte fractions, of diet-induced obese C57BL/6 mice, where increased oxidative stress is induced. Thus, it is suggested that microvesicles, especially MFG-E8-associated ones, modulate adipose functions under redox- and hormone-dependent regulation. Based on the above findings, the adipocyte-derived microvesicles were named adiposomes.
    Endocrinology 09/2007; 148(8):3850-62. DOI:10.1210/en.2006-1479 · 4.50 Impact Factor
Show more

Preview (2 Sources)

9 Reads
Available from