Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 03/2006; 78(2):303-14. DOI: 10.1086/500273
Source: PubMed

ABSTRACT CHARGE syndrome is a well-established multiple-malformation syndrome with distinctive consensus diagnostic criteria. Characteristic associated anomalies include ocular coloboma, choanal atresia, cranial nerve defects, distinctive external and inner ear abnormalities, hearing loss, cardiovascular malformations, urogenital anomalies, and growth retardation. Recently, mutations of the chromodomain helicase DNA-binding protein gene CHD7 were reported to be a major cause of CHARGE syndrome. We sequenced the CHD7 gene in 110 individuals who had received the clinical diagnosis of CHARGE syndrome, and we detected mutations in 64 (58%). Mutations were distributed throughout the coding exons and conserved splice sites of CHD7. Of the 64 mutations, 47 (73%) predicted premature truncation of the protein. These included nonsense and frameshift mutations, which most likely lead to haploinsufficiency. Phenotypically, the mutation-positive group was more likely to exhibit cardiovascular malformations (54 of 59 in the mutation-positive group vs. 30 of 42 in the mutation-negative group; P=.014), coloboma of the eye (55 of 62 in the mutation-positive group vs. 30 of 43 in the mutation-negative group; P=.022), and facial asymmetry, often caused by seventh cranial nerve abnormalities (36 of 56 in the mutation-positive group vs. 13 of 39 in the mutation-negative group; P=.004). Mouse embryo whole-mount and section in situ hybridization showed the expression of Chd7 in the outflow tract of the heart, optic vesicle, facio-acoustic preganglion complex, brain, olfactory pit, and mandibular component of the first branchial arch. Microarray gene-expression analysis showed a signature pattern of gene-expression differences that distinguished the individuals with CHARGE syndrome with CHD7 mutation from the controls. We conclude that cardiovascular malformations, coloboma, and facial asymmetry are common findings in CHARGE syndrome caused by CHD7 mutation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.
    Nature 08/2014; · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Mutations in CHD7, a gene previously implicated in CHARGE syndrome, have been reported in patients presenting with Kallmann syndrome (KS) or congenital hypogonadotropic hypogonadism (CHH). Most mutations causing CHARGE syndrome result in premature stop codons and occur de novo, but the proportion of truncating versus non-truncating mutations in KS and CHH patients is still unknown. Objective: To determine the nature, prevalence, mode of transmission, and clinical spectrum of CHD7 mutations in a large series of patients. Design: We studied 209 KS and 94 CHH patients. These patients had not been diagnosed as CHARGE syndrome according to the current criteria. We searched for mutations in 16 KS and CHH genes including CHD7. Results: We found presumably pathogenic mutations in CHD7 in 24 KS patients, but not in CHH patients. Non-truncating mutations (16 missense, and a two-codon duplication) were more prevalent than truncating mutations (three nonsense, three frame-shift, and a splice site), which contrasts with patients presenting with typical CHARGE syndrome. Thus the clinical spectrum associated with CHD7 mutations may be partly explained by genotype/phenotype correlations. Eight patients also had congenital deafness and one had a cleft lip/palate, whereas six had both. For 10 patients, the presence of diverse features of the CHARGE spectrum in at least one relative argues against a de novo appearance of the missense mutation, and this was confirmed by genetic analysis in five families. Conclusion: Considering the large prevalence and clinical spectrum of CHD7 mutations, it will be particularly relevant to genetic counseling to search for mutations in this gene in KS patients seeking fertility treatment, especially if KS is associated with deafness and cleft lip/palate.
    Journal of Clinical Endocrinology &amp Metabolism 07/2014; · 6.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review provides an overview of the state and future directions of development and pathology in the craniofacial complex in the context of Cranial Neural Crest Cells (CNCC). CNCC are a multipotent cell population that is largely responsible for forming the vertebrate head. We focus on findings that have increased the knowledge of gene regulatory networks and molecular mechanisms governing CNCC migration and the participation of these cells in tissue formation. Pathology due to aberrant migration or cell death of CNCC, termed neurocristopathies, is discussed in addition to craniosynostoses. Finally, we discuss tissue engineering applications that take advantage of recent advancements in genome editing and the multipotent nature of CNCC. These applications have relevance to treating diseases due directly to the failure of CNCC, and also in restoring tissues lost due to a variety of reasons. Birth Defects Research (Part C), 2014. © 2014 Wiley Periodicals, Inc.
    Birth Defects Research Part C Embryo Today Reviews 09/2014; · 4.44 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014