Performance evaluation of fingerprint verification systems.

Biometric System Laboratory-DEIS, University of Bologna, via Sacchi 3, 47023 Cesena, Italy.
IEEE Transactions on Pattern Analysis and Machine Intelligence (Impact Factor: 4.8). 02/2006; 28(1):3-18. DOI: 10.1109/TPAMI.2006.20
Source: PubMed

ABSTRACT This paper is concerned with the performance evaluation of fingerprint verification systems. After an initial classification of biometric testing initiatives, we explore both the theoretical and practical issues related to performance evaluation by presenting the outcome of the recent Fingerprint Verification Competition (FVC2004). FVC2004 was organized by the authors of this work for the purpose of assessing the state-of-the-art in this challenging pattern recognition application and making available a new common benchmark for an unambiguous comparison of fingerprint-based biometric systems. FVC2004 is an independent, strongly supervised evaluation performed at the evaluators' site on evaluators' hardware. This allowed the test to be completely controlled and the computation times of different algorithms to be fairly compared. The experience and feedback received from previous, similar competitions (FVC2000 and FVC2002) allowed us to improve the organization and methodology of FVC2004 and to capture the attention of a significantly higher number of academic and commercial organizations (67 algorithms were submitted for FVC2004). A new, "Light" competition category was included to estimate the loss of matching performance caused by imposing computational constraints. This paper discusses data collection and testing protocols, and includes a detailed analysis of the results. We introduce a simple but effective method for comparing algorithms at the score level, allowing us to isolate difficult cases (images) and to study error correlations and algorithm "fusion." The huge amount of information obtained, including a structured classification of the submitted algorithms on the basis of their features, makes it possible to better understand how current fingerprint recognition systems work and to delineate useful research directions for the future.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elastic distortion of friction ridge skin is one of the major challenges in fingerprint matching. Since existing fingerprint matching systems cannot match seriously distorted fingerprints, criminals may purposely distort their fingerprints to evade identification. Existing distortion detection techniques require availability of specialized hardware or fingerprint video, limiting their use in real applications. In this paper we conduct a study on fingerprint distortion and develop an algorithm to detect fingerprint distortion from a single image which is captured using traditional fingerprint sensing techniques. The detector is based on analyzing ridge period and orientation information. Promising results are obtained on a public domain fingerprint database containing distorted fingerprints.
    Information Forensics and Security (WIFS), 2012 IEEE International Workshop on; 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article proposes several improvements to an adaptive fingerprint enhancement method that is based on contextual filtering. The term adaptive implies that parameters of the method are automatically adjusted based on the input fingerprint image. Five processing blocks comprise the adaptive fingerprint enhancement method, where four of these blocks are updated in our proposed system. Hence, the proposed overall system is novel. The four updated processing blocks are; preprocessing, global analysis, local analysis and matched filtering. In the pre-processing and local analysis blocks, a nonlinear dynamic range adjustment method is used. In the global analysis and matched filtering blocks, different forms of order statistical filters are applied. These processing blocks yield an improved and new adaptive fingerprint image processing method. The performance of the updated processing blocks is presented in the evaluation part of this paper. The algorithm is evaluated towards the NIST developed NBIS software for fingerprint recognition on FVC databases.
    IEEE Transactions on Image Processing 09/2012; · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper summarizes the results of the fingerprint verification competition organized in conjunction with IJCB 2011. The competition focused on benchmarks covering both proprietary encoding and ISO template format. Considering the benchmarks difficulty, some of the algorithms submitted achieved very good accuracy: a 0.7% EER and a 1.1% EER were obtained on two challenging benchmarks, using proprietary and ISO template formats, respectively. Based on the participant self-description of the best performing algorithms we tried to figure out the most promising building-block technologies.
    International Joint Conference on Biometrics (IJCB11); 10/2011


Available from