Carbon catabolite repression regulates amino acid permeases in Saccharomyces cerevisiae via TOR signaling pathway

Institute of Urology and Nephrology, University College London, 67 Riding House Street, London W1W 7EY, United Kingdom.
Journal of Biological Chemistry (Impact Factor: 4.57). 04/2006; 281(9):5546-52. DOI: 10.1074/jbc.M513842200
Source: PubMed

ABSTRACT We have identified carbon catabolite repression (CCR) as a regulator of amino acid permeases in Saccharomyces cerevisiae, elucidated the permeases regulated by CCR, and identified the mechanisms involved in amino acid permease regulation by CCR. Transport of l-arginine and l-leucine was increased by approximately 10-25-fold in yeast grown in carbon sources alternate to glucose, indicating regulation by CCR. In wild type yeast the uptake (pmol/10(6) cells/h), in glucose versus galactose medium, of l-[(14)C]arginine was (0.24 +/- 0.04 versus 6.11 +/- 0.42) and l-[(14)C]leucine was (0.30 +/- 0.02 versus 3.60 +/- 0.50). The increase in amino acid uptake was maintained when galactose was replaced with glycerol. Deletion of gap1Delta and agp1Delta from the wild type strain did not alter CCR induced increase in l-leucine uptake; however, deletion of further amino acid permeases reduced the increase in l-leucine uptake in the following manner: 36% (gnp1Delta), 62% (bap2Delta), 83% (Delta(bap2-tat1)). Direct immunofluorescence showed large increases in the expression of Gnp1 and Bap2 proteins when grown in galactose compared with glucose medium. By extending the functional genomic approach to include major nutritional transducers of CCR in yeast, we concluded that SNF/MIG, GCN, or PSK pathways were not involved in the regulation of amino acid permeases by CCR. Strikingly, the deletion of TOR1, which regulates cellular response to changes in nitrogen availability, from the wild type strain abolished the CCR-induced amino acid uptake. Our results provide novel insights into the regulation of yeast amino acid permeases and signaling mechanisms involved in this regulation.

  • Source
    • "Yeast cells were recovered by centrifugation, washed in 0.6 mL of a HEPES based transport buffer [5], and finally resuspended to OD 600 = 0.7 − 0.8. Radio-labelled amino acid uptake was measured using techniques described previously [5] [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Catabolite repression (CCR) regulates amino acid permeases in Saccharomyces cerevisiae via a TOR-kinase mediated mechanism. When glucose, the preferred fuel in S. cerevisiae, is substituted by galactose, amino acid uptake is increased. Here we have assessed the contribution and metabolic significance of this surfeit of amino acid in yeast undergoing catabolite derepression (CDR). L-[U-(14)C]leucine oxidation was increased 15 ± 1 fold in wild type (WT) strain grown in galactose compared to glucose. Under CDR, leucine oxidation was (i) proportional to uptake, as demonstrated by decreased uptake and oxidation of leucine in strains deleted of major leucine permeases and (ii) entirely dependent upon the TCA cycle, as cytochrome c1 (Cyt1) deleted strains could not grow in galactose. A regulator of amino acid carbon entry into the TCA cycle, branched chain ketoacid dehydrogenase, was also increased 29 ± 3 fold under CCR in WT strain. Protein expression of key TCA cycle enzymes, citrate synthase (Cs), and Cyt1 was increased during CDR. In summary, CDR upregulation of amino acid uptake is accompanied by increased utilization of amino acids for yeast growth. The mechanism for this is likely to be an increase in protein expression of key regulators of the TCA cycle.
    02/2013; 2013:461901. DOI:10.1155/2013/461901
  • Source
    • "The most likely mechanism of the increased amino acid permease activity under CCR is the increased translation of their mRNAs. Furthermore, regulation of amino acid permeases by CCR is not via the SNF1 nutritional transduction pathway, generally associated with CCR, but via a transducer more commonly associated with Nitrogen Catabolite Repression (NCR), namely the TOR pathway (Peter et al., 2006). Herein, we report the identification and regulation of the fbaA gene, encoding a putative fructose 1,6-biphosphate aldolase (FBA) – an enzyme involved in both glycolysis and gluconeogenesis ) – by complementation of the fbaA1013 mutation with an autonomously replicative A. nidulans genomic library. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In Aspergillus nidulans the fbaA1013 mutation results in reduced or total loss of growth on glycolytic and gluconeogenic carbon sources, respectively. It also negatively affects growth on several amino acids (including L-proline, L-glutamate or L-aspartate) that the fungus can use as nitrogen source on glycolytic carbon sources. Complementation of the fbaA1013 mutation using an A. nidulans genomic library resulted in cloning of the fbaA gene, which encodes a putative fructose 1,6-biphosphate aldolase (FBA), an enzyme involved in both glycolysis and gluconeogenesis. The fbaA1013 mutation is a chromosome rearrangement in the 5' regulatory region of the fbaA gene resulting in reduced or total loss of transcription in response to glycolytic and gluconeogenic carbon sources respectively. The fbaA gene is essential for growth. A functional FbaA protein is necessary for plasma membrane localization of the AgtA acidic amino acid (L-glutamate/L-aspartate) transporter, as the fbaA1013 mutation results in targeting to and presumably subsequent degradation of AgtA in the vacuole. Our results support a novel role of the FbaA protein that is, involvement in the regulation of amino acids transporters.
    Fungal Genetics and Biology 12/2009; 47(3):254-67. DOI:10.1016/j.fgb.2009.12.004 · 3.26 Impact Factor
  • Source
    • "It is not yet known, however, whether the Tor proteins sense intracellular glucose or some other indicator of carbon source availability. The lack of Tor1 also impairs the downregulation by glucose of different amino acid permeases (Peter et al., 2006). In addition, in the absence of Tor1, mitochondrial respiration is increased during growth on glucose. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
    FEMS Microbiology Reviews 08/2008; 32(4):673-704. DOI:10.1111/j.1574-6976.2008.00117.x · 13.81 Impact Factor
Show more