Inducible phosphorylation of NF-kappa B p65 at serine 468 by T cell costimulation is mediated by IKK epsilon

Hannover Medical School, Hanover, Lower Saxony, Germany
Journal of Biological Chemistry (Impact Factor: 4.6). 04/2006; 281(10):6175-83. DOI: 10.1074/jbc.M508045200
Source: PubMed

ABSTRACT Here we identify IKKepsilon as a novel NF-kappaB p65 kinase that mediates inducible phosphorylation of Ser468 and Ser536 in response to T cell costimulation. In addition, the kinase activity of IKKepsilon contributes to the control of p65 nuclear uptake. Serines 468 and 536 are evolutionarily conserved, and the surrounding amino acids display sequence homology. Down-regulation of IKKepsilon levels by small interfering RNA does not affect inducible phosphorylation of Ser536 but largely prevents Ser468 phosphorylation induced by T cell costimulation. Ser536-phosphorylated p65 is found predominantly in the cytosol. In contrast, the Ser468 phosphorylated form of this transcription factor occurs mainly in the nucleus, suggesting a function for transactivation. Reconstitution of p65-/- cells with either wild type p65 or point-mutated p65 variants showed that inducible phosphorylation of Ser468 serves to enhance p65-dependent transactivation. These results also provide a mechanistic link that helps to explain the relevance of IKKepsilon for the expression of a subset of NF-kappaB target genes without affecting cytosolic IkappaBalpha degradation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. Signal transduction kinases play a pivotal role as chromatin-anchored proteins in eukaryotes. Here we report for the first time that protein kinase C-theta (PKC-θ) promotes EMT by acting as a critical chromatin-anchored switch for inducible genes via TGF-β and the key inflammatory regulatory protein, NF-κB. Chromatinized PKC-θ exists as an active transcription complex and is required to establish a permissive chromatin state at signature EMT genes. Genome-wide analysis identifies a unique cohort of inducible PKC-θ-sensitive genes that are directly tethered to PKC-θ in the mesenchymal state. Collectively, we show that crosstalk between signaling kinases and chromatin is critical for eliciting inducible transcriptional programs that drive mesenchymal differentiation and CSC formation, providing novel mechanisms to target using epigenetic therapy in breast cancer.
    Molecular and Cellular Biology 06/2014; 34(16). DOI:10.1128/MCB.01693-13 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
    Seminars in Immunology 06/2014; DOI:10.1016/j.smim.2014.05.004 · 6.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.
    Virology 12/2014; 476C:92-99. DOI:10.1016/j.virol.2014.12.005 · 3.28 Impact Factor