Article

Vitamin D signaling is modulated on multiple levels in health and disease.

Musculosceletal Research Center, Orthopedic Department, University of Wuerzburg, Brettreichstrasse 11, D-97074 Wuerzburg, Germany.
Molecular and Cellular Endocrinology (Impact Factor: 4.04). 04/2006; 248(1-2):149-59. DOI: 10.1016/j.mce.2005.11.039
Source: PubMed

ABSTRACT Vitamin D signaling is dependent on the availability and turnover of the active Vitamin D receptor (VDR) ligand 1,25-dihydroxycholecalciferol and on the efficiency of VDR transactivation. Activating and inactivating secosteroid metabolizing p450 enzymes, e.g. 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase, are responsible for ligand availability on the basis of substrate production in the skin and of nutritional intake of precursors. Net availability of active hormone depends on the delivery of substrate and the balance of activating and inactivating enzymes. 1Alpha-hydroxylase is the critical activating enzyme. It is expressed in the kidney for systemic supply and in target tissues for local secosteroid activation. It is upregulated in the kidney by low calcium intake and parathyroid hormone, downregulated by phosphatonins and proinflammatory signal transduction. Transactivation of VDR depends on the correct molecule structure, effective nuclear translocation and the presence of the unliganded heterodimer partner retinoid X-receptor (RXR) and other nuclear cofactors. Rapid Vitamin D-dependent membrane associated effects and consecutive second messenger activation exert an own pattern of gene regulation. A membrane receptor for these effects is hypothesized but not yet identified. Rickets is the long known clinical syndrome of impaired Vitamin D signaling due to Vitamin D3 deficiency. It can be caused by inherited defects of the cascade, nutritional deficits, lack of sunlight exposure, malabsorption and underlying diseases like chronic inflammation. It has been shown during the last decades that many modifiers of Vitamin D signaling are targets of disease in terms of inherited and acquired syndromes and that Vitamin D signaling is modulated at multiple levels and is more complex than mere mechanistic ligand/receptor/DNA interaction.

1 Bookmark
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D and folate are highly UV sensitive, and critical for maintaining health throughout the lifecycle. This study examines whether solar irradiance during the first trimester of pregnancy influences vitamin D receptor (VDR) and nuclear folate gene variant occurrence, and whether affected genes influence late-life biochemical/clinical phenotypes. 228 subjects were examined for periconceptional exposure to solar irradiance, variation in vitamin D/folate genes (polymerase chain reaction - PCR), dietary intake (food frequency questionnaire - FFQ) and important adult biochemical/clinical phenotypes. Periconceptional solar irradiance was associated with VDR-BsmI (p=0.0008(wk7)), TaqI (p=0.0014(wk7)), and EcoRV (p=0.0030(wk6)) variant occurrence between post-conceptional weeks 6-8, a period when ossification begins. Similar effects were detected for other VDR gene polymorphisms. Periconceptional solar irradiance was also associated with 19bp del-DHFR (p=0.0025(wk6)), and to a lesser extent C1420T-SHMT (p=0.0249(wk6)), a folate-critical time during embryogenesis. These same genes were associated with several late-life phenotypes: VDR-BsmI, TaqI and ApaI determined the relationship between dietary vitamin D and both insulin (p<0.0001/BB, 0.0007/tt and 0.0173/AA respectively) and systolic blood pressure (p=0.0290/Bb, 0.0299/Tt and 0.0412/AA respectively), making them important early and late in the lifecycle. While these and other phenotype associations were found for the VDR variants, folate polymorphism associations in later-life were limited to C1420T-SHMT (p=0.0037 and 0.0297 for fasting blood glucose and HbA1c levels respectively). We additionally report nutrient-gene relationships with BMI, thiol/folate metabolome, cognition, depression, and hypertension. Furthermore, photoperiod at conception influenced occurrence of VDR-Tru9I and 2R3R-TS genotypes (p=0.0120 and 0.0360 respectively). Findings identify environmental and nutritional agents that may interact to modify gene-phenotype relationships across the lifecycle, offering new insight into human ecology. This includes factors related to both disease aetiology and the evolution of skin pigmentation.
    Evolution, medicine, and public health. 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1α,25-dihydroxyvitamin D 3. BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified the nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1α,25-dihydroxyvitamin D 3 . By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis. (A. Hague). Abbreviations: NR, nuclear receptor; GR, glucocorticoid receptor; AR, androgen receptor; ER, oestrogen receptor; RAR, retinoic acid receptor; VDR, vitamin D receptor; NK, primary normal oral keratinocytes; 1α,25(OH) 2 D 3 , 1α,25-dihydroxyvitamin D 3 ; VDRE, vitamin D response element; K-sfm, keratinocyte serum-free medium; FBS, foetal bovine serum; EGF, epidermal growth factor; PBS, phosphate buffered saline; IRES, internal ribosomal entry site; Å, Angstrom; PCNA, proliferating cell nuclear antigen 0014-4827/$ – see front matter a v a i l a b l e a t w w w. s c i e n c e d i r e c t . c o m w w w. e l s e v i e r. c o m / l o c a t e / y e x c r
  • The lancet. Diabetes & endocrinology. 04/2014; 2(4):275-6.