Porphyromonas gingivalis affects host collagen degradation by affecting expression, activation, and inhibition of matrix metalloproteinases

Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
Journal of Periodontal Research (Impact Factor: 2.47). 03/2006; 41(1):47-54. DOI: 10.1111/j.1600-0765.2005.00835.x
Source: PubMed


Studies have shown that Porphyromonas gingivalis and host matrix metalloproteinases (MMPs) play important roles in the tissue destruction associated with periodontal disease. It is still unclear which MMPs or their inhibitors are regulated by P. gingivalis at the transcriptional and/or at the protein levels. Therefore, this study was conducted to determine what effects P. gingivalis supernatant has on the collagen degrading ability of human gingival fibroblasts (HGFs) and how it regulates the activation, mRNA expression, and inhibition of MMPs.
Culture supernatant from P. gingivalis ATCC 33277 was added to HGFs cultured in six-well plates coated with Type I collagen. At certain time intervals, the cell conditioned media was collected for zymography and/or western blot analyses to determine the MMP and tissue inhibitor of MMPs (TIMP) protein levels. The cells were then removed and the collagen cleavage visualized by Coomassie blue staining. The mRNA expression of multiple MMPs and TIMPs by the treated and untreated HGFs was determined by reverse transcription-polymerase chain reaction.
The collagen in the six-well plates was degraded more rapidly by the HGFs treated with 10% v/v P. gingivalis supernatant. More active MMP-1, MMP-2, MMP-3, and MMP-14 were detected in the conditioned media from the HGFs treated with the P. gingivalis supernatant. TIMP-1, but not TIMP-2, was decreased in the presence of the P. gingivalis supernatant. MMP-1 mRNA expression by the treated HGFs increased more than two-fold over the untreated HGFs. MMP-3 mRNA was unchanged, MMP-2 mRNA had a slight increase, MMP-14 mRNA decreased, and MMP-15 increased. MMP-12 mRNA was induced in the P. gingivalis treated HGFs. TIMP-1 and TIMP-2 mRNA had a slight increase with P. gingivalis treatment.
Porphyromonas gingivalis increased the collagen degrading ability of HGFs, in part, by increasing MMP activation and by lowering the TIMP-1 protein level, as well as by affecting the mRNA expression of multiple MMPs and TIMPs.

0 Reads
  • Source
    • "This omission may account for the conflicting reports in the literature. Hence, some studies have observed lower TIMP-1 levels in the conditioned media of HGFs in response to P. gingivalis LPS [49]. In contrast, other studies have noted the increased expression level of TIMP-1 in gingival crevicular fluid of periodontitis patients [45,47]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Porphyromonas gingivalis lipopolysaccharide (LPS) is a crucial virulence factor strongly associated with chronic periodontitis which is the primary cause of tooth loss in adults. It exhibits remarkable heterogeneity containing tetra-(LPS1435/1449) and penta-(LPS1690) acylated lipid A structures. Human gingival fibroblasts (HGFs) as the main resident cells of human gingiva play a key role in regulating matrix metalloproteinases (MMPs) and contribute to periodontal homeostasis. This study investigated the expression and regulation of MMPs1-3 and tissue inhibitors of MMP-1 (TIMP-1) in HGFs in response to P. gingivalis LPS1435/1449 and LPS1690 and hexa-acylated E. coli LPS as a reference. The expression of MMPs 1–3 and TIMP-1 was evaluated by real-time PCR and ELISA. Results The MMP-3 mRNA and protein were highly upregulated in P. gingivalis LPS1690- and E. coli LPS-treated cells, whereas no induction was observed in P. gingivalis LPS1435/1449-treated cells. On the contrary, the expression of MMP-1 and −2 was not significantly affected by P. gingivalis LPS lipid A heterogeneity. The TIMP-1 mRNA was upregulated in P. gingivalis LPS1435/1449- and E. coli LPS-treated cells. Next, signal transduction pathways involved in P. gingivalis LPS-induced expression of MMP-3 were examined by blocking assays. Blockage of p38 MAPK and ERK significantly inhibited P. gingivalis LPS1690-induced MMP-3 expression in HGFs. Conclusion The present findings suggest that the heterogeneous lipid A structures of P. gingivalis LPS differentially modulate the expression of MMP-3 in HGFs, which may play a role in periodontal pathogenesis.
    BMC Microbiology 03/2013; 13(1):73. DOI:10.1186/1471-2180-13-73 · 2.73 Impact Factor
  • Source
    • "On the part of MMPs, increase denoted for MMP-12 and MMP-13 also points to matrix and particularly elastin and collagen degradation as a response of PDLF to strain exposure. This process appears possible, since PDL cells synthesise tropoelastin [30], and in vitro studies on other periodontal cells have shown that gingival fibroblasts expressed higher levels of MMP-12 following bacterial challenge [31]. Matrix-associated molecules such as osteopontin which are immanent characteristics for PDL cells were also found to be enhanced upon strain, and may here contribute to emphasise features of mineralised tissues observed in these cells after mechanical loading [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechano-transduction in periodontal ligament (PDL) cells is crucial for physiological and orthodontic tooth movement-associated periodontal remodelling. On the mechanistic level, molecules involved in this mechano-transduction process in PDL cells are not yet completely elucidated. In the present study we show by western blot (WB) analysis and/or indirect immunofluorescence (IIF) that mechanical strain modulates the amount of the matrix metalloproteinase MMP-13, and induces non-coherent modulation in the amount and activity of signal transducing molecules, such as FAK, MAP-kinases p42/44, and p38 stress kinase, suggesting their mechanistic role in mechano-transduction. Increase in the amount of FAK occurs concomitant with increased levels of the focal contact integrin subunits beta3 and beta1, as indicated by WB or optionally by IIF. By employing specific inhibitors, we further identified p42/44 and p38 in their activated, i.e. phosphorylated state responsible for the expression of MMP-13. This finding may point to the obedience in the expression of this MMP as extracellular matrix (ECM) remodelling executioner from the activation state of mechano-transducing molecules. mRNA analysis by pathway-specific RT-profiler arrays revealed up- and/or down-regulation of genes assigning to MAP-kinase signalling and cell cycle, ECM and integrins and growth factors. Up-regulated genes include for example focal contact integrin subunit alpha3, MMP-12, MAP-kinases and associated kinases, and the transcription factor c-fos, the latter as constituent of the AP1-complex addressing the MMP-13 promotor. Among others, genes down-regulated are those of COL-1 and COL-14, suggesting that strain-dependent mechano-transduction may transiently perturbate ECM homeostasis. Strain-dependent mechano-/signal-transduction in PDL cells involves abundance and activity of FAK, MAP-kinases p42/44, and p38 stress kinase in conjunction with the amount of MMP-13, and integrin subunits beta1 and beta3. Identifying the activated state of p42/44 and p38 as critical for MMP-13 expression may indicate the mechanistic contribution of mechano-transducing molecules on executioners of ECM homeostasis.
    BMC Cell Biology 01/2010; 11(1):10. DOI:10.1186/1471-2121-11-10 · 2.34 Impact Factor
  • Source
    • "The result was in accordance with the findings of others (Chang et al., 2002; Pattamapun et al., 2003; Zhou & Windsor, 2006; Bodet et al., 2007). However, we did not observe the stimulatory effect of P. gingivalis on MMP-2 production although previous studies reported that P. gingivalis stimulated or activated the secretion of MMP-2 in gingival and periodontal ligament fibroblasts (Chang et al., 2002; Pattamapun et al., 2003; Zhou & Windsor, 2006; Bodet et al., 2007). The possible explanation for this discrepancy might be that the experimental protocols used were different. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinases (MMPs) play pivotal roles in inflammatory diseases including chronic periodontitis. The effects of Prevotella intermedia, a major periodontal pathogen, on MMP-9 production in primary human periodontal ligament (hPDL) cells were examined in the present study. MMP-9 mRNA expression was measured by semiquantitative reverse transcriptase PCR and its protein secretion was assayed by gelatin zymography. Prevotella intermedia ATCC 25611 supernatant time and dose-dependently induced MMP-9 expression. In contrast, Porphyromanas gingivalis ATCC 33277 supernatants, Escherichia coli lipopolysacchride and IL-1beta exhibited no stimulatory effects on MMP-9 production in hPDL cells. Mitogen-activated protein kinases [MAPK, including extracellular signal-related kinases (ERK), c-jun N-terminal kinases (JNK) and p38] inhibitors exerted no effect on the P. intermedia-induced MMP-9 production, indicating that P. intermedia induced MMP-9 production through an MAPK-independent pathway. Our results demonstrated that P. intermedia may contribute to periodontal tissue destruction during chronic periodontitis by inducing MMP-9 production in hPDL cells.
    FEMS Microbiology Letters 07/2008; 283(1):47-53. DOI:10.1111/j.1574-6968.2008.01140.x · 2.12 Impact Factor
Show more