Article

West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States.

Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA.
Annual Review of Medicine (Impact Factor: 15.48). 02/2006; 57:181-94. DOI: 10.1146/annurev.med.57.121304.131418
Source: PubMed

ABSTRACT West Nile virus (WNV) was first detected in North America in 1999 during an outbreak of encephalitis in New York City. Since then the virus has spread across North America and into Canada, Latin America, and the Caribbean. The largest epidemics of neuroinvasive WNV disease ever reported occurred in the United States in 2002 and 2003. This paper reviews new information on the epidemiology and clinical aspects of WNV disease derived from greatly expanded surveillance and research on WNV during the past six years.

2 Bookmarks
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus responsible for outbreaks of meningitis and encephalitis. Whereas the activation of autophagy in cells infected with other flaviviruses is well known, the interaction of WNV with the autophagic pathway still remains unclear and there are reports describing opposite findings obtained even analyzing the same viral strain. To clarify this controversy, we first analyzed the induction of autophagic features in cells infected with a panel of WNV strains. WNV was determined to induce autophagy in a strain dependent manner. We observed that all WNV strains or isolates analyzed, except for the WNV NY99 used, upregulated the autophagic pathway in infected cells. Interestingly, a variant derived from this WNV NY99 isolated from a persistently infected mouse increased LC3 modification and aggregation. Genome sequencing of this variant revealed only two non-synonymous nucleotide substitutions when compared to parental NY99 strain. These nucleotide substitutions introduced one amino acid replacement in NS4A and other in NS4B. Using genetically engineered viruses we showed that introduction of only one of these replacements was sufficient to upregulate the autophagic pathway. Thus, in this work we have shown that naturally occurring point mutations in the viral non-structural proteins NS4A and NS4B confer WNV with the ability to induce the hallmarks of autophagy such as LC3 modification and aggregation. Even more, the differences on the induction of an autophagic response observed among WNV variants in infected cells did not correlate with alterations on the activation of the unfolded protein response (UPR), suggesting an uncoupling of UPR and autophagy during flavivirus infection. The findings here reported could help to improve the knowledge of the cellular processes involved on flavivirus-host cell interactions and contribute to the design of effective strategies to combat these pathogens.
    Frontiers in Microbiology 01/2015; 5:797. · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) is a zoonotic virus, which is transmitted by mosquitoes. It is the causative agent of the disease syndrome called West Nile fever. In some human cases, a WNV infection can be associated with severe neurological symptoms. The immune response to WNV is multifactorial and includes both humoral and cellular immunity. T-cell epitope mapping of the WNV envelope (E) protein has been performed in C57BL/6 mice, but not in BALB/c mice. Therefore, we performed in BALB/c mice a T-cell epitope mapping using a series of peptides spanning the WNV envelope (E) protein. To this end, the WNV-E specific T cell repertoire was first expanded by vaccinating BALB/c mice with a DNA vaccine that generates subviral particles that resemble West Nile virus. Furthermore, the WNV structural protein was expressed in Escherichia coli as a series of overlapping 20-mer peptides fused to a carrier-protein. Cytokine-based ELISPOT assays using these purified peptides revealed positive WNV-specific T cell responses to peptides within the different domains of the E-protein.
    PLoS ONE 01/2014; 9(12):e115343. · 3.53 Impact Factor
  • Source