VEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells

Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
Cell (Impact Factor: 33.12). 02/2006; 124(1):175-89. DOI: 10.1016/j.cell.2005.10.036
Source: PubMed

ABSTRACT Adult neovascularization relies on the recruitment of circulating cells, but their angiogenic roles and recruitment mechanisms are unclear. We show that the endothelial growth factor VEGF is sufficient for organ homing of circulating mononuclear myeloid cells and is required for their perivascular positioning and retention. Recruited bone marrow-derived circulating cells (RBCCs) summoned by VEGF serve a function distinct from endothelial progenitor cells. Retention of RBCCs in close proximity to angiogenic vessels is mediated by SDF1, a chemokine induced by VEGF in activated perivascular myofibroblasts. RBCCs enhance in situ proliferation of endothelial cells via secreting proangiogenic activities distinct from locally induced activities. Precluding RBCCs strongly attenuated the proangiogenic response to VEGF and addition of purified RBCCs enhanced angiogenesis in excision wounds. Together, the data suggest a model for VEGF-programmed adult neovascularization highlighting the essential paracrine role of recruited myeloid cells and a role for SDF1 in their perivascular retention.

Download full-text


Available from: Myriam Grunewald, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept of antiangiogenic therapy in cancer treatment has led to the approval of different agents, most of them targeting the well known vascular endothelial growth factor pathway. Despite promising results in preclinical studies, the efficacy of antiangiogenic therapy in the clinical setting remains limited. Recently, awareness has emerged on resistance to antiangiogenic therapies. It has become apparent that the intricate complex interplay between tumors and stromal cells, including endothelial cells and associated mural cells, allows for escape mechanisms to arise that counteract the effects of these targeted therapeutics. Here, we review and discuss known and novel mechanisms that contribute to resistance against antiangiogenic therapy and provide an outlook to possible improvements in therapeutic approaches.
    Pharmacological Reviews 03/2015; 67:441-461. · 18.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prognosis of advanced gastric cancer has been dreadful with the majority of patients dying of their disease within 1 year of the diagnosis. In the advanced stage several therapeutic options can be discussed, including molecular targeted agents, but biological predicting factors are lacking. A number of molecular targets have been studied over the last decade bringing to several phase II studies; however very few agents moved into phase III clinical trials. The VEGFR-2 inhibitor monoclonal antibody Ramucirumab has been recently approved in advanced progressing gastric cancer. This article reviews the basic science as well as clinical data of VEGF signaling in advanced gastric cancer with special emphasis on the different VEGF targeting agents tested previously in this disease.
    Critical Reviews in Oncology/Hematology 01/2014; DOI:10.1016/j.critrevonc.2014.05.012 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The poor prognosis of patients with colorectal-cancer liver metastases (CRLM) and the insufficiency of available treatments have raised the need for alternative curative strategies. We aimed to assess the therapeutic potential of TL-118, a new anti-angiogenic drug combination, for CRLM treatment, in a mouse model. The therapeutic potential of TL-118 was evaluated and compared with B20-4.1.1 (B20; anti-VEGF antibody) and rapamycin in CRLM-bearing mice. Tumour progression and the vascular changes were monitored by MRI. Additionally, mice survival, cell proliferation, apoptosis and vessel density were evaluated. This study demonstrated an unequivocal advantage to TL-118 therapy by significantly prolonging survival (threefold) and reducing metastasis perfusion and vessel density (ninefold). The underlying mechanism for TL-118-treatment success was associated with hepatic perfusion attenuation resulting from reduced nitric-oxide (NO) serum levels as elucidated by using hemodynamic response imaging (HRI, a functional MRI combined with hypercapnia and hyperoxia). Further, systemic hepatic perfusion reduction during the initial treatment phase by adding NO inhibitor has proven to be essential for reaching maximal therapeutic effects for both TL-118 and B20. TL-118 harbours a potential clinical benefit to CLRM patients. Moreover, the reduction of hepatic perfusion at early stages of anti-angiogenic therapies by adding NO inhibitor is crucial for achieving maximal anti-tumour effects.
    British Journal of Cancer 07/2012; 107(4):658-66. DOI:10.1038/bjc.2012.322 · 4.82 Impact Factor