Article

VEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells

Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
Cell (Impact Factor: 33.12). 02/2006; 124(1):175-89. DOI: 10.1016/j.cell.2005.10.036
Source: PubMed

ABSTRACT Adult neovascularization relies on the recruitment of circulating cells, but their angiogenic roles and recruitment mechanisms are unclear. We show that the endothelial growth factor VEGF is sufficient for organ homing of circulating mononuclear myeloid cells and is required for their perivascular positioning and retention. Recruited bone marrow-derived circulating cells (RBCCs) summoned by VEGF serve a function distinct from endothelial progenitor cells. Retention of RBCCs in close proximity to angiogenic vessels is mediated by SDF1, a chemokine induced by VEGF in activated perivascular myofibroblasts. RBCCs enhance in situ proliferation of endothelial cells via secreting proangiogenic activities distinct from locally induced activities. Precluding RBCCs strongly attenuated the proangiogenic response to VEGF and addition of purified RBCCs enhanced angiogenesis in excision wounds. Together, the data suggest a model for VEGF-programmed adult neovascularization highlighting the essential paracrine role of recruited myeloid cells and a role for SDF1 in their perivascular retention.

Full-text

Available from: Myriam Grunewald, May 18, 2015
0 Followers
 · 
247 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) have been proposed as a promising cell population for cell therapy and regenerative medicine applications. However, the low retention and poor survival of engrafted cells hampered the therapeutic efficacy of engrafted MSCs. Ghrelin is a 28-amino-acid peptide hormone and is proved to exert a protective effect on the cardiovascular system. This study is designed to investigate the protective effects of ghrelin on engrafted adipose-derived mesenchymal stem cells (ADMSCs) and its beneficial effects with cellular therapy in mice myocardial infarction (MI). Results showed that intramyocardial injection of ADMSCs combining with ghrelin administration inhibited host cardiomyocyte apoptosis, reduced fibrosis, and improved cardiac function. To reveal possible mechanisms, ADMSCs were subjected to hypoxia/serum deprivation (H/SD) injury to simulate ischemic conditions in vivo. Ghrelin (10(-8) M, 33712 pg/ml) improved ADMSCs survival under H/SD condition. Western blot assay revealed that ghrelin increased AKT phosphorylation both in vivo and in vitro, decreased the proapoptotic protein Bax, and increased the antiapoptotic protein Bcl-2 in vitro, while these effects were abolished by PI3K inhibitor LY294002. These revealed that ghrelin may serve as a promising candidate for hormone-driven approaches to improve the efficacy of mesenchymal stem cell-based therapy for cardiac ischemic disease via PI3K/AKT pathway.
    01/2015; 2015:858349. DOI:10.1155/2015/858349
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cessation of blood supply due to myocardial infarction (MI) leads to complicated pathological alteration in the affected regions. Cardiac stem cells (CSCs) migration plays a major role in promoting recovery of cardiac function and protecting cardiomyocytes in post-MI remodeling. Despite being the most abundant cell type in the mammalian heart, cardiac fibroblasts (CFs) were underestimated in the mechanism of CSCs migration. Our objective in this study is therefore to investigate the migration related factors secreted by hypoxia CFs in vitro and the degree that they contribute to CSCs migration. We found that supernatant from hypoxia induced CFs could accelerate CSCs migration. Four migration-related cytokines were reported upregulated both in mRNA and protein levels. Upon adding antagonists of these cytokines, the number of migration cells significantly declined. When the cocktail antagonists of all above four cytokines were added, the migration cells number reduced to the minimum level. Besides, MMP-9 had an important effect on triggering CSCs migration. As shown in our results, MMP-9 induced CSCs migration and the underlying mechanism might involve TNF-α signaling which induced VEGF and MMP-9 expression.
    Stem cell International 02/2015; 2015:836390. DOI:10.1155/2015/836390 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adult hippocampus hosts a population of neural stem and progenitor cells (NSPCs) that proliferates throughout the mammalian life span. To date, the new neurons derived from NSPCs have been the primary measure of their functional relevance. However, recent studies show that undifferentiated cells may shape their environment through secreted growth factors. Whether endogenous adult NSPCs secrete functionally relevant growth factors remains unclear. We show that adult hippocampal NSPCs secrete surprisingly large quantities of the essential growth factor VEGF in vitro and in vivo. This self-derived VEGF is functionally relevant for maintaining the neurogenic niche as inducible, NSPC-specific loss of VEGF results in impaired stem cell maintenance despite the presence of VEGF produced from other niche cell types. These findings reveal adult hippocampal NSPCs as an unanticipated source of an essential growth factor and imply an exciting functional role for adult brain NSPCs as secretory cells.