Conformity index: A review

Institut Curie, Orsay, France.
International Journal of Radiation OncologyBiologyPhysics (Impact Factor: 4.18). 03/2006; 64(2):333-42. DOI: 10.1016/j.ijrobp.2005.09.028
Source: PubMed

ABSTRACT We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30cm(3) of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30cm(3) of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
    Medical dosimetry: official journal of the American Association of Medical Dosimetrists 12/2014; DOI:10.1016/j.meddos.2014.11.001 · 1.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs). A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score ≥ 70) before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT, IMRT and IMRT_PMC&CST) were developed by 3 different physicists using the Pinnacle planning system. Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased in IMRT_PMC&CST group (p < 0.001). In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target volume could be clearly marked as OARs and spared during treatment.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In linac-based stereotactic radiosurgery (SRS) and radiotherapy (SRT), circular cone(s) or conformal arc(s) are conventionally used to treat intracranial lesions. However, when the target is in close proximity to critical structures, it is frequently quite challenging to generate a quality plan using these techniques. In this study, we investigated the dosimetric characteristics of using high-dose rate RapidArc (RA) technique for radiosurgical treatment of intracranial lesions. A total of 10 intracranial SRS/SRT cases previously planned using dynamic conformal arc (DCA) or cone-based techniques have been included in this study. For each case, 3 treatment plans were generated: (1) a DCA plan with multiple noncoplanar arcs, (2) a high-dose rate RA plan with arcs oriented the same as DCA (multiple-arc RA), and 3) a high-dose rate RA plan with a single coplanar arc (single-arc RA). All treatment plans were generated under the same prescription and similar critical structure dose limits. Plan quality for different plans was evaluated by comparing various dosimetric parameters such as target coverage, conformity index (CI), homogeneity index (HI), critical structures, and normal brain tissue doses as well as beam delivery time. With similar critical structure sparing, high-dose rate RA plans can achieve much better target coverage, dose conformity, and dose homogeneity than the DCA plans can. Plan quality indices CI and HI, for the DCA, multiple-arc RA, and single-arc RA techniques, were measured as 1.67 ± 0.39, 1.32 ± 0.28, and 1.38 ± 0.30 and 1.24 ± 0.11, 1.10 ± 0.04, and 1.12 ± 0.07, respectively. Normal brain tissue dose (V12Gy) was found to be similar for DCA and multiple-arc RA plans but much larger for the single-arc RA plans. Beam delivery was similar for DCA and multiple-arc RA plans but shorter with single-arc RA plans. Multiple-arc RA SRS/SRT can provide better treatment plans than conventional DCA plans, especially for complex cases. Copyright © 2015. Published by Elsevier Inc.
    Medical dosimetry: official journal of the American Association of Medical Dosimetrists 05/2015; 40(1):3-8. DOI:10.1016/j.meddos.2014.01.002 · 1.26 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014