Article

Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood.

Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
Nature Neuroscience (Impact Factor: 14.98). 03/2006; 9(2):268-75. DOI: 10.1038/nn1629
Source: PubMed

ABSTRACT Neurogenesis is known to take place in the adult brain. This work identifies T lymphocytes and microglia as being important to the maintenance of hippocampal neurogenesis and spatial learning abilities in adulthood. Hippocampal neurogenesis induced by an enriched environment was associated with the recruitment of T cells and the activation of microglia. In immune-deficient mice, hippocampal neurogenesis was markedly impaired and could not be enhanced by environmental enrichment, but was restored and boosted by T cells recognizing a specific CNS antigen. CNS-specific T cells were also found to be required for spatial learning and memory and for the expression of brain-derived neurotrophic factor in the dentate gyrus, implying that a common immune-associated mechanism underlies different aspects of hippocampal plasticity and cell renewal in the adult brain.

1 Bookmark
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inappropriate T cell responses in the central nervous system (CNS) affect the pathogenesis of a broad range of neuroinflammatory and neurodegenerative disorders that include, but are not limited to, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. On the one hand immune responses can exacerbate neurotoxic responses; while on the other hand, they can lead to neuroprotective outcomes. The temporal and spatial mechanisms by which these immune responses occur and are regulated in the setting of active disease have gained significant recent attention. Spatially, immune responses that affect neurodegeneration may occur within or outside the CNS. Migration of antigen-specific CD4+ T cells from the periphery to the CNS and consequent immune cell interactions with resident glial cells affect neuroinflammation and neuronal survival. The destructive or protective mechanisms of these interactions are linked to the relative numerical and functional dominance of effector or regulatory T cells. Temporally, immune responses at disease onset or during progression may exhibit a differential balance of immune responses in the periphery and within the CNS. Immune responses with predominate T cell subtypes may differentially manifest migratory, regulatory and effector functions when triggered by endogenous misfolded and aggregated proteins and cell-specific stimuli. The final result is altered glial and neuronal behaviors that influence the disease course. Thus, discovery of neurodestructive and neuroprotective immune mechanisms will permit potential new therapeutic pathways that affect neuronal survival and slow disease progression.
    Translational neurodegeneration. 01/2014; 3(1):25.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Immunosenescence and cognitive decline are common markers of the aging process. Taking into consideration the heterogeneity observed in aging processes and the recently described link between lymphocytes and cognition, we herein explored the possibility of an association between alterations in lymphocytic populations and cognitive performance.Methods: In a cohort of cognitively healthy adults (n = 114), previously characterized by diverse neurocognitive/psychological performance patterns, detailed peripheral blood immunophenotyping of both the innate and adaptive immune systems was performed by flow cytometry.Results: Better cognitive performance was associated with lower numbers of effector memory CD4+ T cells and higher numbers of naive CD8+ T cells and B cells. Furthermore, effector memory CD4+ T cells were found to be predictors of general and executive function and memory, even when factors known to influence cognitive performance in older individuals (e.g., age, sex, education, and mood)
    Neurology - Neuroimmunology Neuroinflammation. 02/2015; 2(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence indicates that neuroimmunological changes in the brain can modify intrinsic brain processes that are involved in regulating neuroplasticity. Increasing evidence suggests that in some forms of motor neuron injury, many neurons do not die, but reside in an atrophic state for an extended period of time. In mice, facial motor neurons in the brain undergo a protracted period of degeneration or atrophy following resection of their peripheral axons. Reinjuring the proximal nerve stump of the chronically resected facial nerve stimulates a robust reversal of motor neuron atrophy which results in marked increases in both the number and size of injured motor neurons in the facial motor nucleus. In this brief review, we describe research from our lab which indicates that the reversal of atrophy in this injury model is dependent on normal cellular immunity. The role of T cells in this unique form of neuroplasticity following injury and in brain aging, are discussed. The potential role of yet undiscover intrinsic actions of recombination activating genes in the brain are considered. Further research using the facial nerve reinjury model could identify molecular signals involved in neuroplasticity, and lead to new ways to stimulate neuroregenerative processes in neurotrauma and other forms of brain insult and disease.
    Journal of neurological disorders. 07/2014; 2(4).