An essential role for DeltaFosB in the nucleus accumbens in morphine action.

Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA.
Nature Neuroscience (Impact Factor: 14.98). 03/2006; 9(2):205-11. DOI: 10.1038/nn1636
Source: PubMed

ABSTRACT The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) and dorsal striatum by the repeated administration of drugs of abuse. Here, we investigated the role of DeltaFosB in the NAc in behavioral responses to opiates. We achieved overexpression of DeltaFosB by using a bitransgenic mouse line that inducibly expresses the protein in the NAc and dorsal striatum and by using viral-mediated gene transfer to specifically express the protein in the NAc. DeltaFosB overexpression in the NAc increased the sensitivity of the mice to the rewarding effects of morphine and led to exacerbated physical dependence, but also reduced their sensitivity to the analgesic effects of morphine and led to faster development of analgesic tolerance. The opioid peptide dynorphin seemed to be one target through which DeltaFosB produced this behavioral phenotype. Together, these experiments demonstrated that DeltaFosB in the NAc, partly through the repression of dynorphin expression, mediates several major features of opiate addiction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The transcription factor ΔFosB is upregulated in numerous brain regions following repeated drug exposure. This induction is likely to, at least in part, be responsible for the mechanisms underlying addiction, a disorder in which the regulation of gene expression is thought to be essential. In this review, we describe and discuss the proposed role of ΔFosB as well as the implications of recent findings. The expression of ΔFosB displays variability dependent on the administered substance, showing region-specificity for different drug stimuli. This transcription factor is understood to act via interaction with Jun family proteins and the formation of activator protein-1 (AP-1) complexes. Once AP-1 complexes are formed, a multitude of molecular pathways are initiated, causing genetic, molecular and structural alterations. Many of these molecular changes identified are now directly linked to the physiological and behavioral changes observed following chronic drug exposure. In addition, ΔFosB induction is being considered as a biomarker for the evaluation of potential therapeutic interventions for addiction.
    The American Journal of Drug and Alcohol Abuse 08/2014; 40(6):1-10. · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous work has implicated the transcription factor, ΔFosB, acting in the nucleus accumbens, in mediating the pro-rewarding effects of drugs of abuse such as cocaine as well as in mediating resilience to chronic social stress. However, the transgenic and viral gene transfer models used to establish these ΔFosB phenotypes express, in addition to ΔFosB, an alternative translation product of ΔFosB mRNA, termed Δ2ΔFosB, which lacks the N-terminal 78 aa present in ΔFosB. To study the possible contribution of Δ2ΔFosB to these drug and stress phenotypes, we prepared a viral vector that overexpresses a point mutant form of ΔFosB mRNA which cannot undergo alternative translation as well as a vector that overexpresses Δ2ΔFosB alone. Our results show that the mutant form of ΔFosB, when overexpressed in the nucleus accumbens, reproduces the enhancement of reward and of resilience seen with our earlier models, with no effects seen for Δ2ΔFosB. Overexpression of full length FosB, the other major product of the FosB gene, also has no effect. These findings confirm the unique role of ΔFosB in nucleus accumbens in controlling responses to drugs of abuse and stress.
    Neuroscience 10/2014; · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stable changes in neuronal gene expression have been studied as mediators of addicted states. Of particular interest is the transcription factor ΔFosB, a truncated and stable FosB gene product whose expression in nucleus accumbens (NAc), a key reward region, is induced by chronic exposure to virtually all drugs of abuse and regulates their psychomotor and rewarding effects. Phosphorylation at Ser(27) contributes to ΔFosB's stability and accumulation following repeated exposure to drugs, and our recent work demonstrates that the protein kinase CaMKIIα phosphorylates ΔFosB at Ser(27) and regulates its stability in vivo. Here, we identify two additional sites on ΔFosB that are phosphorylated in vitro by CaMKIIα, Thr(149) and Thr(180), and demonstrate their regulation in vivo by chronic cocaine. We show that phosphomimetic mutation of Thr(149) (T149D) dramatically increases AP-1 transcriptional activity while alanine mutation does not affect transcriptional activity when compared with wild-type (WT) ΔFosB. Using in vivo viral-mediated gene transfer of ΔFosB-T149D or ΔFosB-T149A in mouse NAc, we determined that overexpression of ΔFosB-T149D in NAc leads to greater locomotor activity in response to an initial low dose of cocaine than does WT ΔFosB, while overexpression of ΔFosB-T149A does not produce the psychomotor sensitization to chronic low-dose cocaine seen after overexpression of WT ΔFosB and abrogates the sensitization seen in control animals at higher cocaine doses. We further demonstrate that mutation of Thr(149) does not affect the stability of ΔFosB overexpressed in mouse NAc, suggesting that the behavioral effects of these mutations are driven by their altered transcriptional properties.
    Journal of Neuroscience 08/2014; 34(34):11461-9. · 6.75 Impact Factor

Full-text (2 Sources)

Available from
Jun 11, 2014