Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression.

Banting and Best Department of Medical Research, University of Toronto, Ontario, M5G 1L6, Canada.
Genes & Development (Impact Factor: 12.64). 02/2006; 20(2):153-8. DOI: 10.1101/gad.1382806
Source: PubMed

ABSTRACT Sequence-based analyses have predicted that approximately 35% of mammalian alternative splicing (AS) events produce premature termination codon (PTC)-containing splice variants that are targeted by the process of nonsense-mediated mRNA decay (NMD). This led to speculation that AS may often regulate gene expression by activating NMD. Using AS microarrays, we show that PTC-containing splice variants are generally produced at uniformly low levels across diverse mammalian cells and tissues, independently of the action of NMD. Our results suggest that most PTC-introducing AS events are not under positive selection pressure and therefore may not contribute important functional roles.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past five years, multiple structurally and functionally distinct androgen receptor (AR) splice variants have been decoded and characterized. The mature transcripts for the majority of the fully decoded AR splice variants contain a transcribed "intronic" sequence, capable of encoding a short variant-specific peptide to replace the AR ligand-binding domain (LBD). Functionally, AR splice variants represent a diverse group of molecules often demonstrating cell context-specific genomic functions that may or may not be coupled with the functions of the canonical full-length AR (AR-FL). However, the full spectrum of their functional diversity and the underlying mechanistic basis remains very poorly characterized. In clinical specimens derived from men treated with a variety of hormone therapy regimens, AR splice variants are almost always expressed at detectable, yet lower levels when compared to that of AR-FL. In spite of the collective in vitro data supporting the putative role of AR splice variants in therapeutic resistance to hormone therapies, the extent to which AR splice variants mediate resistance to each individual regimen is not known and awaits thorough investigations in a clinically relevant setting using specimens from men undergoing treatments. Among the AR splice variants, AR-V7 is more abundantly and frequently expressed in castration-resistant prostate cancer (CRPC) and remains the most important variant identified so far. The relative importance of different AR molecules, including AR-FL, should be functionally dissected in the setting of castration-resistant prostate cancer, particularly in tumors resistant to more potent inhibitors of AR-FL recently approved by the FDA. In this review, we will focus on the discovery and characterization of AR splice variants, their putative functions and roles in mediating constitutively active AR signaling, and key areas of investigation that are necessary to establish their clinical relevance.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Digitalis purpurea (D. purpurea) is one of the most important medicinal plants and is well known in the treatment of heart failure because of the cardiac glycosides that are its main active compounds. However, in the absence of strand specific sequencing information, the post-transcriptional mechanism of gene regulation in D. purpurea thus far remains unknown. In this study, a strand-specific RNA-Seq library was constructed and sequenced using Illumina HiSeq platforms to characterize the transcriptome of D. purpurea with a focus on alternative splicing (AS) events and the effect of AS on protein domains. De novo RNA-Seq assembly resulted in 48,475 genes. Based on the assembled transcripts, we reported a list of 3,265 AS genes, including 5,408 AS events in D. purpurea. Interestingly, both glycosyltransferases and monooxygenase, which were involved in the biosynthesis of cardiac glycosides, are regulated by AS. A total of 2,422 AS events occurred in coding regions, and 959 AS events were located in the regions of 882 unique protein domains, which could affect protein function. This D. purpurea transcriptome study substantially increased the expressed sequence resource and presented a better understanding of post-transcriptional regulation to further facilitate the medicinal applications of D. purpurea for human health.
    PLoS ONE 08/2014; 9(8):e106001. DOI:10.1371/journal.pone.0106001 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary myelofibrosis (PMF) is an acquired clonal disease of the hematopoietic stem cell compartment, characterized by bone marrow fibrosis, anemia, splenomegaly and extramedullary hematopoiesis. About 60% of patients with PMF harbor a somatic mutation of the JAK2 gene (JAK2-V617F) in their hematopoietic lineage. Recently, a splicing isoform of JAK2, lacking exon 14 (JAK2Δ14) was described in patients affected by myeloproliferative diseases. By using a specific RT-qPCR method, we measured the ratio between the splicing isoform and the JAK2 full-length transcript (JAK2+14) in granulocytes, isolated from peripheral blood, of forty-four patients with PMF and nine healthy donors. We found that JAK2Δ14 was only slightly increased in patients and, at variance with published data, the splicing isoform was also detectable in healthy controls. We also found that, in patients bearing the JAK2-V617F mutation, the percentage of mutated alleles correlated with the observed increase in JAK2Δ14. Homozygosity for the mutation was also associated with a higher level of JAK2+14. Bioinformatic analysis indicates the possibility that the G>T transversion may interfere with the correct splicing of exon 14 by modifying a splicing regulatory sequence. Increased levels of JAK2 full-length transcript and a small but significant increase in JAK2 exon 14 skipping, are associated with the JAK2-V617F allele burden in PMF granulocytes. Our data do not confirm a previous claim that the production of the JAK2Δ14 isoform is related to the pathogenesis of PMF.
    PLoS ONE 01/2015; 10(1):e0116636. DOI:10.1371/journal.pone.0116636 · 3.53 Impact Factor


Available from