Article

Enzyme-linked immunosorbent assay for quantitative determination of capsular polysaccharide production in Streptococcus pneumoniae clinical isolates.

División de Vacunas, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave. 31, entre 158 y 190, Apartado 6162, CP 10600, La Habana, Cuba.
Biotechnology and Applied Biochemistry (Impact Factor: 1.35). 06/2006; 44(Pt 2):101-8. DOI: 10.1042/BA20060007
Source: PubMed

ABSTRACT A simple, specific, sensitive and reproducible ELISA has been developed to quantify the level of CPS (capsular polysaccharide) production in supernatants of Streptococcus pneumoniae cell cultures. CPSs from Strep. pneumoniae have been widely used as vaccine antigens. The quantification method is based on two type-23F serotype-specific polyclonal antibodies: IgG, purified from sera of mice immunized with a pneumococcal type-23F CPS conjugate, used in the coating step, and a serotype-specific rabbit serum as the second antibody. Solutions of purified type-23F CPS were used as standards. The relationship between A(492) and type-23F CPS concentration was linear over the range 1-310 ng/ml (r=0.989), with 1 ng/ml as the lower limit of sensitivity. The specificity of ELISA was assessed because purified type-19F CPS and cell-wall polysaccharide samples were not detected after their evaluation by the ELISA described in the present study. Repeatability and intermediate precision of the assay were good, the coefficients of variation being 3 and 10% respectively. This ELISA allowed selection of an appropriate vaccine strain, for a natural polysaccharide vaccine, among several 23F pneumococcal clinical isolates and constituted a valuable analytical tool for Strep. pneumoniae fermentation and CPS purification follow-up.

0 Bookmarks
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capacity of Streptococcus pneumoniae to produce capsular polysaccharide (CPS) is essential for virulence. The CPS biosynthesis proteins CpsB, CpsC, and CpsD function to regulate CPS production via tyrosine phosphorylation of CpsD. This mechanism of regulating CPS production is important for enabling S. pneumoniae to cause invasive disease. Here, we identify mutations affecting the attachment of CPS to the cell wall. These mutations were located in cpsC, such that CpsC functioned independently from CpsD tyrosine phosphorylation. These mutants produced WT levels of CPS, but were unable to cause bacteremia in mice after intranasal challenge. This finding suggests that cell-wall attachment of CPS is essential for invasive pneumococcal disease; production of WT levels of CPS alone is not sufficient. We also show that cpsB mutants, which lack the phosphotyrosine-protein phosphatase, produced less CPS than the WT strain, but attached substantially more CPS to their cell wall. Thus, the phosphorylated form of CpsD promotes attachment of CPS to the cell wall.
    Proceedings of the National Academy of Sciences 06/2006; 103(22):8505-10. · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The increasing requirement for multivalent vaccines containing diverse capsular polysaccharides has created an unmet need for a fast and straightforward assay for polysaccharide titer. We describe a novel and robust assay for the quantitation of anionic capsular polysaccharides. The binding of hexadecyltrimethyammonium bromide (Hb) to anionic capsular polysaccharides results in a precipitation reaction wherein the suspension turbidity is proportional to polysaccharide titer. The turbidity can be quickly measured as absorbance across a range of wavelengths that resolve scattering light. Carbohydrates comprised of repeating units of one to seven monosaccharides with phosphodiester groups, uronic acids, and sialic acids all reacted strongly and there does not appear to be specificity with respect to the particular anionic moiety. The assay is compatible with an array of common buffers across a pH range of 3.0-8.75 and with NaCl concentration exceeding 400mM. Interference from DNA can be eliminated with a short incubation step with DNase. With these treatments, the assay has been employed in samples as complex as fermentation broth. A two-log dynamic range has been established with a mean relative standard deviation less than 10% across this range although inferior performance has been observed in fermentation broth. The precipitation assay enables the rapid quantitation of anionic polysaccharides. The resulting procedure can robustly measure the titer of myriad anionic capsular polysaccharides (CPS) in 96 samples in less than 30min using low toxicity reagents and routine laboratory equipment. This development will greatly reduce the effort required to measure polysaccharide titer and yield during process development of polysaccharide vaccines.
    Vaccine 10/2013; · 3.77 Impact Factor