Hypoglycosylation of alpha-dystroglycan in patients with hereditary IBM due to GNE mutations.

Medical Genetics Branch, National Human Genome Research Institute/NIH, Bethesda, MD, USA.
Molecular Genetics and Metabolism (Impact Factor: 2.83). 04/2004; 81(3):196-202. DOI: 10.1016/j.ymgme.2003.11.012
Source: PubMed

ABSTRACT Hereditary inclusion body myopathy (HIBM) is an adult onset neuromuscular disorder associated with mutations in the gene UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), whose product is the rate limiting bi-functional enzyme catalyzing the first two steps of sialic acid biosynthesis. Loss of GNE activity in HIBM is thought to impair sialic acid production and interfere with proper sialylation of glycoconjugates, but it remains unclear how such a defect would lead to muscle destruction and muscle weakness. Hypoglycosylation of alpha-dystroglycan, a central protein of the skeletal muscle dystrophin-glycoprotein complex, results in disturbed interactions with extracellular matrix proteins. This has recently been identified as the pathomechanism involved in several congenital muscular dystrophies. We examined the glycosylation status of alpha-dystroglycan in muscle biopsies of four HIBM patients of non-Iranian Jewish origin (one American, two Indians, and one Greek). Two of these patients carry novel compound heterozygous GNE mutations on exon 2 and exon 9. All four muscle biopsies showed absent or markedly reduced immunolabeling with two different antibodies (VIA4 and IIH6) to glycosylated epitopes of alpha-dystroglycan. Normal labeling was found using antibodies to the core alpha-dystroglycan protein, beta-dystroglycan, and laminin alpha-2. These findings resemble those found for other congenital muscular dystrophies, suggesting that HIBM may be a "dystroglycanopathy," and providing an explanation for the muscle weakness of patients with GNE mutations.

1 Follower
  • Source
    • "The enzyme consists of two domains: the GNE domain carries out epimerase function, while the MNK domain conducts the kinase activity. Mutations in the GNE gene can result in two different human disorders, HIBM or sialuria (Huizing et al., 2005). Strong evidence suggests that the etiology of HIBM is related to mutations in the GNE gene (MIM:603824). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary Inclusion Body Myopathy (HIBM, IBM2, MIM:600737) is an autosomal recessive adult onset progressive muscle wasting disorder. It is associated with the degeneration of distal and proximal muscles, while often sparing the quadriceps. The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK), encoded by the GNE gene, catalyzes the first two committed, rate-limiting steps in the biosynthesis of N-acetylneunaminic acid (sialic acid). Affected individuals have been identified with mutations in the GNE gene. In the present study, the GNE coding region of 136 symptomatic patients were sequenced. A total of 41 patients were found to have GNE mutations. Eight novel mutations were discovered among seven patients. Of the eight novel mutations, seven were missense (p.I150V, p.Y186C, p.M265T, p.V315T, p.N317D, p.G669R, and p.S699L) and one was nonsense (p.W495X), all of which span the epimerase, kinase, and allosteric domains of GNE. In one patient, one novel mutation was found in the allosteric region and kinase domain of the GNE gene. Mutations in the allosteric region lead to a different disease, sialuria; however, this particular mutation has not been described in patients with sialuria. The pathological significance of this variation with GNE function remains unknown and further studies are needed to identify its connection with HIBM. These findings further expand the clinical and genetic spectrum of HIBM.
    Genetic Testing and Molecular Biomarkers 02/2013; DOI:10.1089/gtmb.2012.0408 · 1.15 Impact Factor
  • Source
    • "If hypoglycosylated adystroglycan is unable to properly bind to the extracellular matrix, the connection between the extracellular matrix and the cytoskeleton provided by dystroglycan is lost and cannot stabilize the sarcolemma during contraction-induced stress. Previous examinations of the glycosylation status of adystroglycan in muscle biopsies of four individuals with HIBM (Huizing et al., 2004) showed absent or markedly reduced immunolabeling with two different antibodies (VIA4 and IIH6) to glycosylated epitopes of a-dystroglycan. These findings resemble those found for other congenital muscular dystrophies, suggesting that HIBM may be a ''dystroglycanopathy ,'' and providing an explanation for the muscle weakness of patients with HIBM. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary inclusion body myopathy (HIBM) is an autosomal recessive adult-onset myopathy due to mutations in the GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) gene. Affected patients have no therapeutic options. We have previously demonstrated in preclinical testing the ability to safely correct GNE gene function through liposomal delivery of the wild-type GNE gene. Results were verified in a single patient treated by intravenous infusion of GNE gene lipoplex. A single patient (patient 001) with severe HIBM treated with a compassionate investigational new drug received seven doses of GNE gene lipoplex via intravenous infusion at the following doses: 0.4, 0.4, 1.0, 4.0, 5.0, 6.0, and 7.0 mg of DNA. GNE transgene expression, downstream induction of sialic acid, safety, and muscle function were evaluated. Transient low-grade fever, myalgia, tachycardia, transaminase elevation, hyponatremia, and hypotension were observed after infusion of each dose of GNE gene lipoplex. Quadriceps muscle expression of the delivered GNE, plasmid, and RNA was observed 24 hr after the 5.0-mg dose and at significantly greater levels 72 hr after the 7.0-mg infusion in comparison with expression in quadriceps muscle immediately before infusion. Sialic acid-related proteins were increased and stabilization in the decline of muscle strength was observed. We conclude that clinical safety and activity have been demonstrated with intravenous infusion of GNE gene lipoplex. Further assessment will involve a phase I trial of intravenous administration of GNE gene lipoplex in individuals with less advanced HIBM with more muscle function.
    Human gene therapy 04/2011; 22(11):1331-41. DOI:10.1089/hum.2010.192 · 3.62 Impact Factor
  • Source
    • "In contrast, HIBM is an autosomal recessive disorder; patients harbor two GNE mutations outside the enzyme's allosteric site, in either the GNE and/or MNK coding domains (Eisenberg et al. 2003). HIBM mutations lead to decreased GNE and MNK enzymatic activities (Effertz et al. 1999; Sparks et al. 2005, Penner et al. 2006) and, in some patients, decreased sialylation of glycoproteins (Huizing et al. 2004; Tajima et al. 2005). To date, more than 60 HIBM-associated GNE mutations (predominantly missense, see Table I) are identified. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The bifunctional enzyme UDP-GlcNAc 2-epimerase/ ManNAc kinase (GNE/MNK), encoded by the GNE gene, catalyzes the first two committed, rate-limiting steps in the biosynthesis of N-acetylneuraminic acid (sialic acid). GNE/MNK is feedback inhibited by binding of the downstream product, CMP-sialic acid in its allosteric site. GNE mutations can result in two human disorders, hereditary inclusion body myopathy (HIBM) or sialuria. So far, no active site geometry predictions or conformational transitions involved with function are available for mammalian GNE/MNK. The N-terminal GNE domain is homologous to various prokaryotic 2-epimerases, some of which have solved crystallographic structures. The C-terminal MNK domain belongs to the sugar kinases superfamily; its crystallographic structure is solved at 2.84 A and three-dimensional structures have also been reported for several other kinases. In this work, we employed available structural data of GNE/MNK homologs to model the active sites of human GNE/MNK and identify critical amino acid residues responsible for interactions with substrates. In addition, we modeled effects of GNE/MNK missense mutations associated with HIBM or sialuria on helix arrangement, substrate binding, and enzyme action. We found that all reported mutations are associated with the active sites or secondary structure interfaces of GNE/MNK. The Persian-Jewish HIBM founder mutation p.M712T is located at the interface alpha4alpha10 and likely affects GlcNAc, Mg2+, and ATP binding. This work contributes to further understanding of GNE/MNK function and ligand binding, which may assist future studies for therapeutic options that target misfolded GNE/MNK in HIBM and/or sialuria.
    Glycobiology 11/2009; 20(3):322-37. DOI:10.1093/glycob/cwp176 · 3.75 Impact Factor
Show more