P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation.

Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8501, Japan.
Molecular Cell (Impact Factor: 14.46). 02/2006; 21(2):227-37. DOI: 10.1016/j.molcel.2005.11.024
Source: PubMed

ABSTRACT Human DSIF, a heterodimer composed of hSpt4 and hSpt5, plays opposing roles in transcription elongation by RNA polymerase II (RNA Pol II). Here, we describe an evolutionarily conserved repetitive heptapeptide motif (consensus = G-S-R/Q-T-P) in the C-terminal region (CTR) of hSpt5, which, like the C-terminal domain (CTD) of RNA Pol II, is highly phosphorylated by P-TEFb. Thr-4 residues of the CTR repeats are functionally important phosphorylation sites. In vitro, Thr-4 phosphorylation is critical for the elongation activation activity of DSIF, but not to its elongation repression activity. In vivo, Thr-4 phosphorylation is critical for epidermal growth factor (EGF)-inducible transcription of c-fos and for efficient progression of RNA Pol II along the gene. We consider this phosphorylation to be a switch that converts DSIF from a repressor to an activator. We propose the "mini-CTD" hypothesis, in which phosphorylated CTR is thought to function in a manner analogous to phosphorylated CTD, serving as an additional code for active elongation complexes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3–9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients.
    Virology 11/2014; 474. DOI:10.1016/j.virol.2014.10.033 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an "Spt5 CTD code" in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on-off switch that is read by diverse CTD receptors, each in its own distinctive manner. © 2014 Doamekpor et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
    RNA 11/2014; 21(1). DOI:10.1261/rna.048181.114 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA polymerase II (RNAPII) pausing/termination shortly after initiation is a hallmark of gene regulation. Here, we show that negative elongation factor (NELF) interacts with Integrator complex subunits (INTScom), RNAPII and Spt5. The interaction between NELF and INTScom subunits is RNA and DNA independent. Using both human immunodeficiency virus type 1 promoter and genome-wide analyses, we demonstrate that Integrator subunits specifically control NELF-mediated RNAPII pause/release at coding genes. The strength of RNAPII pausing is determined by the nature of the NELF-associated INTScom subunits. Interestingly, in addition to controlling RNAPII pause-release INTS11 catalytic subunit of the INTScom is required for RNAPII processivity. Finally, INTScom target genes are enriched in human immunodeficiency virus type 1 transactivation response element/NELF binding element and in a 3' box sequence required for small nuclear RNA biogenesis. Revealing these unexpected functions of INTScom in regulating RNAPII pause-release and completion of mRNA synthesis of NELF-target genes will contribute to our understanding of the gene expression cycle.
    Nature Communications 11/2014; 5:5531. DOI:10.1038/ncomms6531 · 10.74 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014