Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants.

Xenogen Corporation, 860 Atlantic Avenue, Alameda, CA 94501, USA.
Microbial Pathogenesis (Impact Factor: 2). 03/2006; 40(2):69-81. DOI: 10.1016/j.micpath.2005.11.002
Source: PubMed

ABSTRACT The infectious yeast Candida albicans is a model organism for understanding the mechanisms of fungal pathogenicity. We describe the functional expression of the firefly luciferase gene, a reporter commonly used to tag genes in many other cellular systems. Due to a non-standard codon usage by this yeast, the CUG codons were first mutated to UUG to allow functional expression. When integrated into the chromosome of C. albicans with a strong constitutive promoter, cells bioluminesce when provided with luciferin substrate in their media. When fused to the inducible promoter from the HWP1 gene, expression and bioluminescence was only detected in cultures conditioning hyphal growth. We further used the luciferase gene as a selection to isolate transformed cell lines from clinical isolates of C. albicans, using a high-density screening strategy that purifies transformed colonies by virtue of light emission. This strategy requires no drug or auxotrophic selectable marker, and we were thus able to generate stable transformants of clinical isolates that are identical to the parental strain in all aspects tested, other than their bioluminescence. The firefly luciferase gene can, therefore, be used as a sensitive reporter to analyze gene function both in laboratory and clinical isolates of this medically important yeast.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole-cell, genetically modified bioreporters are designed to emit detectable signals in response to a target analyte or related group of analytes. When integrated with a transducer capable of measuring those signals, a biosensor results that acts as a self-contained analytical system useful in basic and applied environmental, medical, pharmacological, and agricultural sciences. Historically, these devices have focused on signaling proteins such as green fluorescent protein, aequorin, firefly luciferase, and/or bacterial luciferase. The biochemistry and genetic development of these sensor systems as well as the advantages, challenges, and common applications of each one will be discussed.
    Sensors 11/2009; 9(11):9147-74. DOI:10.3390/s91109147 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fungi can cause severe invasive infections especially in the immunocompromised host. Patient populations at risk are increasing due to ongoing developments in cancer treatment and transplantation medicine. Only limited diagnostic tools and few antifungals are available, rendering a significant number of invasive fungal infections life threatening. To reduce mortality rates, a better understanding of the infection processes is urgently required. Bioluminescence imaging (BLI) is a powerful tool for such purposes, since it allows visualisation of temporal and spatial progression of infections in real time. BLI has been successfully used to monitor infections caused by various microorganisms, in particular bacteria. However, first studies have also been performed on the fungi Candida albicans and Aspergillus fumigatus. Although BLI was, in principle, suitable to study the infection process, some limitations remained. Here, different luciferase systems are introduced, and current approaches are summarised. Finally, suggestions for further improvements of BLI to monitor fungal infections are provided.
    International Journal of Microbiology 01/2012; 2012:956794. DOI:10.1155/2012/956794
  • [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains.
    Virulence 04/2014; 5(4). DOI:10.4161/viru.28893 · 3.32 Impact Factor