Cdc42 Activation Couples Spindle Positioning to First Polar Body Formation in Oocyte Maturation

Ottawa Health Research Institute, OHRI, Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada.
Current Biology (Impact Factor: 9.92). 02/2006; 16(2):214-20. DOI: 10.1016/j.cub.2005.11.067
Source: PubMed

ABSTRACT During vertebrate egg maturation, cytokinesis initiates after one pole of the bipolar metaphase I spindle attaches to the oocyte cortex, resulting in the formation of a polar body and the mature egg. It is not known what signal couples the spindle pole positioning to polar body formation. We approached this question by drawing an analogy to mitotic exit in budding yeast, as asymmetric spindle attachment to the appropriate cortical region is the common regulatory cue. In budding yeast, the small G protein Cdc42 plays an important role in mitotic exit following the spindle pole attachment . We show here that inhibition of Cdc42 activation blocks polar body formation. The oocytes initiate anaphase but fail to properly form and direct a contractile ring. Endogenous Cdc42 is activated at the spindle pole-cortical contact site immediately prior to polar body formation. The cortical Cdc42 activity zone, which directly overlays the spindle pole, is circumscribed by a cortical RhoA activity zone; the latter defines the cytokinetic contractile furrow . As the RhoA ring contracts during cytokinesis, the Cdc42 zone expands, maintaining its complementary relationship with the RhoA ring. Cdc42 signaling may thus be an evolutionarily conserved mechanism that couples spindle positioning to asymmetric cytokinesis.


Available from: Hélène Benink, May 27, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian oocyte maturation is distinguished by asymmetric division that is regulated primarily by cytoskeleton, including microtubules and microfilaments. Small Rho GTPase RhoA is a key regulator of cytoskeletal organization which regulates cell polarity, migration, and division. In this study, we investigated the roles of RhoA in mammalian oocyte meiosis and early embryo cleavage. (1) Disrupting RhoA activity or knock down the expression of RhoA caused the failure of polar body emission. This may have been due to decreased actin assembly and subsequent spindle migration defects. The involvement of RhoA in this process may have been though its regulation of actin nucleators ROCK, p-Cofilin, and ARP2 expression. (2) In addition, spindle morphology was also disrupted and p-MAPK expression decreased in RhoA inhibited or RhoA KD oocytes, which indicated that RhoA also regulated MAPK phosphorylation for spindle formation. (3) Porcine embryo development was also suppressed by inhibiting RhoA activity. Two nuclei were observed in one blastomere, and actin expression was reduced, which indicated that RhoA regulated actin-based cytokinesis of porcine embryo. Thus, our results demonstrated indispensable roles for RhoA in regulating porcine oocyte meiosis and cleavage during early embryo development.
    Cell cycle (Georgetown, Tex.) 11/2014; 13(21):3390-403. DOI:10.4161/15384101.2014.952967 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Female germ cell meiotic divisions are typically asymmetric, giving rise to two daughter cells with different sizes. Spindle movements including spindle migration from the oocyte center to the cortex and spindle rotation from parallel to perpendicular (typically in the mouse) at the cortex are crucial for these asymmetric divisions and therefore are crucial for gamete production. Different regulatory mechanisms for spindle movements have been determined in different species and a wide variety of different molecular components and processes that are involved in spindle movements have also been identified in different species. Here, we review the current state of knowledge as well as our understanding of mechanisms for spindle movements in different systems with focus on three main aspects: microtubules (MT), microfilaments (MF) and molecules associated with cytoskeletal organization as well as molecules that are not directly related to the cytoskeleton. How they might interact or function independently during female meiotic divisions in different species is discussed in detail.
    Asian Australasian Journal of Animal Sciences 11/2009; 22(11). DOI:10.5713/ajas.2009.r.12 · 0.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of developmental biology is to explain the emergence of pattern in cell layers, tissues and organs. Developmental biologists now accept that reaction diffusion-based mechanisms are broadly employed in developing organisms to direct pattern formation. Here we briefly consider these mechanisms and then apply some of the concepts derived from them to several processes that occur in single cells: wound repair, yeast budding, and cytokinesis. Two conclusions emerge from this analysis: first, there is considerable overlap at the level of general mechanisms between developmental and single cell pattern formation; second, dynamic structures based on the actin cytoskeleton may be far more ordered than is generally recognized.
    Current opinion in cell biology 02/2014; 26C:51-59. DOI:10.1016/ · 8.74 Impact Factor