Intracellular zinc release and ERK phosphorylation are required upstream of 12-lipoxygenase activation in peroxynitrite toxicity to mature rat oligodendrocytes

Harvard University, Cambridge, Massachusetts, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2006; 281(14):9460-70. DOI: 10.1074/jbc.M510650200
Source: PubMed

ABSTRACT Peroxynitrite toxicity has been implicated in the pathogenesis of white matter injury. The mechanisms of peroxynitrite toxicity to oligodendrocytes (OLs), the major cell type of the white matter, are unknown. Using primary cultures of mature OLs that express myelin basic protein, we found that 3-morpholinosydnonimine, a peroxynitrite generator, caused toxicity to OLs. N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine, a zinc chelator, completely blocked peroxynitrite-induced toxicity. Use of FluoZin-3, a specific fluorescence zinc indicator, demonstrated the liberation of zinc from intracellular stores by peroxynitrite. Peroxynitrite caused the sequential activation of extracellular signal-regulated kinase 42/44 (ERK42/44), 12-lipoxygenase, and generation of reactive oxygen species, which were all dependent upon the intracellular release of zinc. The same cell death pathway was also activated when exogenous zinc was used. These results suggest that in addition to preventing the formation of peroxynitrite, useful strategies in preventing disease progression in pathologies in which peroxynitrite toxicity plays a critical role might include maintaining intracellular zinc homeostasis, blocking phosphorylation of ERK42/44, inhibiting activation of 12-lipoxygenase, and eliminating the accumulation of reactive oxygen species.


Available from: Jianrong Li, May 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin (cis-diamminedichloroplatinum, CDDP) is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS), regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl) polymerase (PARP). We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA) rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.
    PLoS ONE 05/2014; 9(5):e92786. DOI:10.1371/journal.pone.0092786 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a functional unit with axons and play a crucial role in axonal integrity. An episode of hypoxia-ischemia causes rapid and severe damage to these particularly vulnerable cells via multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress, and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelination and dysmyelination, and this has profound effects on axonal function, transport, structure, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke and especially in periventricular leukomalacia and should be considered as a primary therapeutic target in these conditions. More emphasis is needed on therapeutic strategies that target OLs, myelin, and their receptors, as these have the potential to significantly attenuate white matter injury and to establish functional recovery of white matter after stroke. In this review, we will summarize recent progress on the role of OLs in white matter ischemic injury and the current and emerging principles that form the basis for protective strategies against OL death.
    CNS Neuroscience & Therapeutics 04/2014; 20(7). DOI:10.1111/cns.12263 · 3.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The molecular mechanisms of the acute hypotensive and indirectly assessed cardiac depressant effect of ethanol (EtOH)-evoked myocardial depression and hypotension in female rats are not known. We tested the hypothesis that a time-dependent myocardial depression caused by EtOH is initiated by its direct and indirect (cardiac vagal dominance) effects and is exacerbated by gradual development of oxidative stress.Methods In conscious female rats, we directly measured left ventricular developed pressure (LVDP), the maximal rise of ventricular pressure over time (dP/dtmax), blood pressure (BP), heart rate (HR), and sympathovagal activity following intragastric EtOH (1 g/kg) or water over 90 minutes. Catalytic activity of acetaldehyde (ACA)-generating (alcohol dehydrogenase [ADH] and catalase) and eliminating aldehyde dehydrogenase [ALDH2] enzymes along with mediators of oxidative stress were measured in myocardial tissues collected at 30, 60, or 90 minutes after EtOH or water.ResultsEtOH reduced myocardial function (LVDP and dP/dtmax) within 5 to 10 minutes before the steady fall in BP in conscious proestrus rats. Further, EtOH shifted the sympathovagal balance, analyzed by spectral analysis of high frequency and low frequency of interbeat intervals, toward vagal dominance. Prior vagal blockade (atropine) or antioxidant (tempol) treatment attenuated EtOH-evoked myocardial depression and hypotension. Ex vivo studies revealed time-dependent: (i) enhancement of ADH, but not ALDH2 activity (indicative of elevated ACA levels), (ii) increases in phosphorylated Akt and ERK1/2, NADPH-oxidase activity, reactive oxygen species, malondialdehyde, and 4-hydroxy-2-nonenal-modified proteins. These molecular responses along with reduced myocardial catalase activity were most evident at 90 minutes post-EtOH when the reductions in cardiac function and BP reached their nadir.Conclusions Vagal dominance and time-dependent myocardial oxidative stress along with the accumulation of cardiotoxic aldehydes mediate EtOH-evoked myocardial dysfunction and hypotension in conscious proestrus female rats.
    Alcoholism Clinical and Experimental Research 05/2014; 38(5). DOI:10.1111/acer.12363 · 3.31 Impact Factor