Serial analysis of gene expression in mouse uterus at the implantation site.

College of Life Science, Northeast Agricultural University, Harbin 150030, China.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2006; 281(14):9351-60. DOI: 10.1074/jbc.M511512200
Source: PubMed

ABSTRACT Although oligonucleotide chips, cDNA microarrays, differential display reverse transcription-PCR, and other approaches have been used to screen implantation-related molecules, the mechanism by which embryo implantation occurs is still unknown. The aim of this study was to profile the differential gene expression between interimplantation site and implantation site in mouse uterus on day 5 of pregnancy by serial analysis of gene expression (SAGE). In our two SAGE libraries of 11-bp tags, the total numbers of tags sequenced were 48,121 for the interimplantation site and 50,227 for the implantation site. There were 1,039 tags specifically expressed at interimplantation site, and 1,252 tags specifically expressed at the implantation site. Based on the p value, there were 195 tags significantly up-regulated at the interimplantation site and 261 tags significantly up-regulated at the implantation site, of which 100 genes were single matched at the interimplantation site and 127 genes were single matched at the implantation site, respectively. By reverse transcription-PCR, the tag ratio between the implantation site and interimplantation site was verified on 14 significantly changed genes. Using in situ hybridization, 1810014L12Rik, Psmb5, Cd63, Npm1, Fads3, and Tagln2 were shown to be highly expressed at the implantation site compared with the interimplantation site. Compared with the interimplantation site, Ddx39 was strongly expressed in the subluminal stromal cells at the implantation site on day 5 of pregnancy. Ddx39 expression at the implantation site was specifically induced by active blastocysts. Additionally, Ddx39 expression was significantly up-regulated by estrogen in the ovariectomized mice. In our SAGE data, many implantation-related genes were identified in mouse uterus. Our data could be a valuable source for future study on embryo implantation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although decidualization is crucial for the establishment of successful pregnancy, the molecular mechanism underlying decidualization remains poorly understood. Crystallin αB (CryAB), a small heat shock protein (sHSP), is up-regulated and phosphorylated in mouse decidua. In mouse primary endometrial stromal cells, CryAB is induced upon progesterone treatment via HIF1α. In addition, CryAB is strongly phosphorylated through the p38-MAPK pathway under stress or during in vitro decidualization. Knockdown of CryAB results in the increase of apoptosis of stromal cells and inhibits decidualization under oxidative or inflammatory stress. Our data indicate that CryAB protects decidualization against stress conditions.
    FEBS Letters 06/2014; · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryo implantation is a complex process that involves synchronized crosstalk between a receptive endometrium and a functional blastocyst. It can take place only during the window of implantation, a period when a series of changes in gene expression occur in the endometrium to accept the embryo. As modulators of gene expression, microRNAs (miRNAs) have been identified as regulators of embryo implantation. To better understand how miRNAs regulate implantation and the related molecular mechanisms, we compared the expression profiles of miRNAs and messenger RNAs between implantation sites (IMs) and inter-IMs in the endometrium of pregnant mice on day 5 by microarrays. The results showed that compared with inter-IMs, 30 miRNAs were upregulated and 42 miRNAs (>2-fold) were downregulated at the IMs. By combining the results of the microarray experiments, we found that 20 upregulated pathways and 14 downregulated pathways might be subject to miRNA regulation at IMs. We also found that some miRNAs and their targets may play a key role in implantation.
    Reproductive sciences (Thousand Oaks, Calif.) 03/2014; · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infertility is an area of increasing in life science research. Although follicular maturation disorders and anovulation are the primary causations of infertility, its molecular mechanism is not well understood. Recent research has shown that microRNAs (miRNAs) might play an important role in the regulation of ovarian follicle development and maturation. In this study, the expression of miRNAs in metaphase I (MI) oocytes treated with or without insulin-like growth factor 1 (IGF-1) was observed by microRNA microarray analysis. Results show that 145 miRNAs were up-regulated and 200 miRNAs were down-regulated in MI oocytes after IGF-1 treatment. MiR-133b, which was up-regulated more than 30-fold, was chosen for further research. As a potential target of miR133b, transgelin 2 (TAGLN2) gene was down-regulated, at both transcription and translation levels, in miR-133b- over-expressed 293T cells, but TAGLN2 was up-regulated when the expression of miR-133b was inhibited. Furthermore, the expression level of TAGLN2 in the ovaries of 8-week- old mice was higher than that observed in 4-week-old mice. Immunofluorescence experiments showed that TAGLN2 was located in the cytoplasm. In general, our results indicate that miR-133b may play important roles in the growth and maturation of oocytes by regulating its potential target, TAGLN2, at both transcription and translation levels. Therefore, our research provides a potential new target for infertility therapy.
    PLoS ONE 06/2014; 9(6):e100751. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014