Article

Implication of the Phosphatidylinositol-3 Kinase/Protein Kinase B Signaling Pathway in the Neuroprotective Effect of Estradiol in the Striatum of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mice

Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
Molecular Pharmacology (Impact Factor: 4.12). 05/2006; 69(4):1492-8. DOI: 10.1124/mol.105.018671
Source: PubMed

ABSTRACT The present experiments sought to determine the implication of estrogen receptors (ERalpha and ERbeta) and their interaction with insulin-like growth factor receptor (IGF-IR) signaling pathways in neuroprotection by estradiol against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. C57BL/6 male mice were pretreated for 5 days with 17beta-estradiol, an estrogen receptor alpha (ERalpha) agonist, 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)tris-phenol (PPT), or an estrogen receptor beta (ERbeta) agonist, 5-androsten-3beta, 17beta-diol (Delta5-diol). On day 5, mice received MPTP (9 mg/kg) or saline injections, and estrogenic treatments were continued for 5 more days. MPTP decreased striatal dopamine, measured by high-performance liquid chromatography, to 59% of control values; 17beta-estradiol and PPT but not Delta5-diol protected against this depletion. MPTP increased IGF-IR measured by Western blot, which was prevented by PPT. The phosphorylation of protein kinase B (Akt) (at serine 473), an essential mediator of IGF-I neuroprotective actions, increased after 17beta-estradiol and tended to increase with PPT but not with Delta5-diol treatments in MPTP mice. Glycogen synthase kinase 3beta (GSK3beta) phosphorylation (at serine 9) was greatly reduced in MPTP mice; this was completely prevented by PPT, whereas 17beta-estradiol and Delta5-diol treatments were less effective. The ratio between the levels of striatal Bcl-2 and BAD proteins, two apoptotic regulators, decreased after MPTP treatment. This effect was effectively prevented only in the animals treated with PPT. In nonlesioned mice, 17beta-estradiol and PPT increased phosphorylation of striatal Akt and GSK3beta, whereas the other markers measured remained unchanged. Delta5-Diol increased GSK3beta phosphorylation less than the PPT treatment. These results suggest that a pretreatment with estradiol promoted dopamine neuron survival by activating ERalpha and increasing Akt and GSK3beta phosphorylation.

0 Followers
 · 
194 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past two decades, there has been a significant amount of research investigating the risks and benefits of hormone replacement therapy (HRT) with regards to neurodegenerative disease. Here, we review basic science studies, randomized clinical trials, and epidemiological studies, and discuss the putative neuroprotective effects of HRT in the context of Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and HIV-associated neurocognitive disorder. Findings to date suggest a reduced risk of Alzheimer's disease and improved cognitive functioning of postmenopausal women who use 17β-estradiol. With regards to Parkinson's disease, there is consistent evidence from basic science studies for a neuroprotective effect of 17β-estradiol; however, results of clinical and epidemiological studies are inconclusive at this time, and there is a paucity of research examining the association between HRT and Parkinson's-related neurocognitive impairment. Even less understood are the effects of HRT on risk for frontotemporal dementia and HIV-associated neurocognitive disorder. Limits to the existing research are discussed, along with proposed future directions for the investigation of HRT and neurodegenerative diseases.
    04/2012; 2012:258454. DOI:10.1155/2012/258454
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: L-Dopa treatment, the gold standard therapy for Parkinson's disease, is hampered by motor complications such as dyskinesias. Recently, impairment of striatal Akt/GSK3 signaling was proposed to play a role in the mechanisms implicated in development of L-Dopa-induced dyskinesias in a rodent model of Parkinson's disease. The present experiment investigated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys, the effects on Akt/GSK3 of chronic L-Dopa treatment inducing dyskinesias compared to L-Dopa with CI-1041 (NMDA receptor antagonist) or a low dose of cabergoline (dopamine D2 receptor agonist) preventing dyskinesias. The extensive dopamine denervation induced by MPTP was associated with a decrease by about half of phosphorylated Akt(Ser473) levels in posterior caudate nucleus, anterior and posterior putamen; smaller changes were observed for phosphorylated Akt(Thr308) levels that did not reach statistical significance. Dopamine depletion reduced phosphorylated GSK3beta(Ser9) levels, mainly in posterior putamen whereas pGSK3beta(Tyr216) and pGSK3alpha(Ser21) were unchanged. In posterior caudate nucleus, anterior and posterior putamen of dyskinetic L-Dopa-treated MPTP monkeys, pAkt(Ser473) and pGSK3beta(Ser9) were elevated whereas L-Dopa+cabergoline treated MPTP monkeys without dyskinesias had lower values in posterior striatum as vehicle-treated MPTP monkeys. In non-dyskinetic MPTP monkeys treated with L-Dopa+CI-1041, putamen pAkt(Ser473) and pGSK3beta(Ser9) levels remained elevated as in dyskinetic monkeys while in posterior caudate nucleus, these levels were low as vehicle-treated and lower than L-Dopa treated MPTP monkeys. Extent of phosphorylation of Akt and GSK3beta in putamen correlated positively with dyskinesias scores of MPTP monkeys; these correlations were higher with dopaminergic drugs (L-Dopa, cabergoline) suggesting implication of additional mechanisms and/or signaling molecules in the NMDA antagonist antidyskinetic effect. In conclusion, our results showed that in MPTP monkeys, loss of striatal dopamine decreased Akt/GSK3 signaling and that increased phosphorylation of Akt and GSK3beta was associated with L-Dopa-induced dyskinesias.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 12/2009; 34(3):446-54. DOI:10.1016/j.pnpbp.2009.12.011 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decreasing levels of sex hormones with aging may have a negative impact on brain function, since this decrease is associated with the progression of neurodegenerative disorders, increased depressive symptoms and other psychological disturbances. Extensive evidence from animal studies indicates that sex steroids, in particular estradiol, are neuroprotective. However, the potential benefits of estradiol therapy for the brain are counterbalanced by negative, life-threatening risks in the periphery. A potential therapeutic alternative to promote neuroprotection is the use of selective estrogen receptor modulators (SERMs), which may be designed to act with tissue selectivity as estrogen receptor agonists in the brain and not in other organs. Currently available SERMs act not only with tissue selectivity, but also with cellular selectivity within the brain and differentially modulate the activation of microglia, astroglia and neurons. Finally, SERMs may promote the interaction of estrogen receptors with the neuroprotective signaling of growth factors, such as the phosphatidylinositol 3-kinase/glycogen synthase kinase 3 pathway.
    Psychoneuroendocrinology 06/2009; 34 Suppl 1:S113-22. DOI:10.1016/j.psyneuen.2009.04.012 · 5.59 Impact Factor