Article

Low plasma coenzyme Q(10) levels as an independent prognostic factor for melanoma progression

Sapienza University of Rome, Roma, Latium, Italy
Journal of the American Academy of Dermatology (Impact Factor: 5). 02/2006; 54(2):234-41. DOI: 10.1016/j.jaad.2005.08.031
Source: PubMed

ABSTRACT Abnormally low plasma levels of coenzyme Q10 (CoQ10) have been found in patients with cancer of the breast, lung, or pancreas.
A prospective study of patients with melanoma was conducted to assess the usefulness of CoQ10 plasma levels in predicting the risk of metastasis and the duration of the metastasis-free interval.
Between January 1997 and August 2004, plasma CoQ10 levels were measured with high-performance liquid chromatography in 117 consecutive melanoma patients without clinical or instrumental evidence of metastasis according to American Joint Committee on Cancer criteria and in 125 matched volunteers without clinically suspect pigmented lesions. Patients taking CoQ10 or cholesterol-lowering medications and those with a diagnosis of diabetes mellitus were excluded from the study. Multiple statistical methods were used to evaluate differences between patients and control subjects and between patients who did (32.5%) and did not (67.5%) develop metastases during follow-up.
CoQ10 levels were significantly lower in patients than in control subjects (t test: P < .0001) and in patients who developed metastases than in the metastasis-free subgroup (t test: P < .0001). Logistic regression analysis indicated that plasma CoQ10 levels were a significant predictor of metastasis (P = .0013). The odds ratio for metastatic disease in patients with CoQ10 levels that were less than 0.6 mg/L (the low-end value of the range measured in a normal population) was 7.9, and the metastasis-free interval was almost double in patients with CoQ10 levels 0.6 mg/L or higher (Kaplan-Meier analysis: P < .001).
A study with a larger sample, which is currently being recruited, and a longer follow-up will doubtlessly increase the statistical power and enable survival statistics to be obtained.
Analysis of our findings suggests that baseline plasma CoQ10 levels are a powerful and independent prognostic factor that can be used to estimate the risk for melanoma progression.

0 Followers
 · 
175 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These two functions constitute the basis for supporting the clinical use of CoQ10. Also at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, ageing-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer and muscular and cardiovascular diseases have been associated with low CoQ10 levels, as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit.
    Molecular syndromology 01/2014; DOI:10.1159/000360101
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose:Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease.Methods:We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family.Results:We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells.Conclusion:Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis.Genet Med advance online publication 24 April 2014Genetics in Medicine (2014); doi:10.1038/gim.2014.39.
    Genetics in Medicine 04/2014; DOI:10.1038/gim.2014.39 · 6.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coenzyme Q₁₀ (Co Q₁₀) or ubiquinone was known for its key role in mitochondrial bioenergetics as electron and proton carrier; later studies demonstrated its presence in other cellular membranes and in blood plasma, and extensively investigated its antioxidant role. These two functions constitute the basis for supporting the clinical indication of Co Q₁₀. Furthermore, recent data indicate that Co Q₁₀ affects expression of genes involved in human cell signalling, metabolism and transport and some of the effects of Co Q₁₀ supplementation may be due to this property. Co Q₁₀ deficiencies are due to autosomal recessive mutations, mitochondrial diseases, ageing-related oxidative stress and carcinogenesis processes, and also a secondary effect of statin treatment. Many neurodegenerative disorders, diabetes, cancer, fibromyalgia, muscular and cardiovascular diseases have been associated with low Co Q₁₀ levels. Co Q₁₀ treatment does not cause serious adverse effects in humans and new formulations have been developed that increase Co Q₁₀ absorption and tissue distribution. Oral Co Q₁₀ treatment is a frequent mitochondrial energizer and antioxidant strategy in many diseases that may provide a significant symptomatic benefit.
    Frontiers in Bioscience 01/2014; 19:619-33. · 4.25 Impact Factor