Article

The Disease Progression of Mecp2 Mutant Mice Is Affected by the Level of BDNF Expression

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
Neuron (Impact Factor: 15.98). 03/2006; 49(3):341-8. DOI: 10.1016/j.neuron.2005.12.027
Source: PubMed

ABSTRACT Mutations in the MECP2 gene cause Rett syndrome (RTT). Bdnf is a MeCP2 target gene; however, its role in RTT pathogenesis is unknown. We examined Bdnf conditional mutant mice for RTT-relevant pathologies and observed that loss of BDNF caused smaller brain size, smaller CA2 neurons, smaller glomerulus size, and a characteristic hindlimb-clasping phenotype. BDNF protein level was reduced in Mecp2 mutant mice, and deletion of Bdnf in Mecp2 mutants caused an earlier onset of RTT-like symptoms. To assess whether this interaction was functional and potentially therapeutically relevant, we increased BDNF expression in the Mecp2 mutant brain with a conditional Bdnf transgene. BDNF overexpression extended the lifespan, rescued a locomotor defect, and reversed an electrophysiological deficit observed in Mecp2 mutants. Our results provide in vivo evidence for a functional interaction between Mecp2 and Bdnf and demonstrate the physiological significance of altered BDNF expression/signaling in RTT disease progression.

0 Followers
 · 
145 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
    Frontiers in Cellular Neuroscience 02/2015; 9:55. DOI:10.3389/fncel.2015.00055 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disturbances in the sleep/wake cycle are prevalent in patients with Rett Syndrome (RTT). We sought to determine whether the circadian system is disrupted in a RTT model, Mecp2(-/y) mice. We found that MeCP2 mutants showed decreased strength and precision of daily rhythms of activity coupled with extremely fragmented sleep. The central circadian clock (suprachiasmatic nucleus) exhibited significant reduction in the number of neurons expressing vasoactive intestinal peptide (VIP) as well as compromised spontaneous neural activity. The molecular clockwork was disrupted both centrally in the SCN and in peripheral organs, indicating a general disorganization of the circadian system. Disruption of the molecular clockwork was observed in fibroblasts of RTT patients. Finally, MeCP2 mutant mice were vulnerable to circadian disruption as chronic jet lag accelerated mortality. Our findings suggest an integral role for MeCP2 in the circadian timing system, provides a possible mechanistic explanation for the sleep/wake disturbances observed in RTT patients. The work raises the possibility that RTT patients may benefit from a temporally structured environment. Copyright © 2015. Published by Elsevier Inc.
    Neurobiology of Disease 03/2015; 77. DOI:10.1016/j.nbd.2015.03.009 · 5.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rett syndrome is a severe neurodevelopmental disorder that is usually caused by mutations in Methyl-CpG-binding Protein 2 (MECP2). Four of the eight common disease causing mutations in MECP2 are nonsense mutations and are responsible for over 35% of all cases of RTT. A strategy to overcome disease-causing nonsense mutations is treatment with nonsense mutation suppressing drugs that allow expression of full length proteins from mutated genes with premature in-frame stop codons. To determine if this strategy is useful in RTT, we characterized a new mouse model containing a knock-in nonsense mutation (p.R255X) in the Mecp2 locus (Mecp2(R255X)). To determine whether the truncated gene product acts as a dominant negative allele and if RTT-like phenotypes could be rescued by expression of wild type protein, we genetically introduced an extra copy of MECP2 via a MECP2 transgene. The addition of MECP2 transgene to Mecp2(R255X) mice abolished the phenotypic abnormalities and resulted in near complete rescue. Expression of MECP2 transgene Mecp2(R255X) allele also rescued mTORC1 signaling abnormalities discovered in mice with loss of function and overexpression of Mecp2. Finally, we treated Mecp2(R255X) embryonic fibroblasts with the nonsense mutation suppressing drug gentamicin and we were able to induce expression of full length MeCP2 from the mutant p.R255X allele. These data provide proof of concept that the p.R255X mutation of MECP2 is amenable to the nonsense suppression therapeutic strategy and provide guidelines for the extent of rescue that can be expected by re-expressing MeCP2 protein. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 01/2015; DOI:10.1093/hmg/ddv030 · 6.68 Impact Factor

Full-text (2 Sources)

Download
88 Downloads
Available from
May 30, 2014