Human health implications of Salmonella-contaminated natural pet treats and raw pet food.

Foodborne, Waterborne, and Zoonotic Infections Division, Public Health Agency of Canada, Guelph, Ontario, Canada.
Clinical Infectious Diseases (Impact Factor: 9.42). 04/2006; 42(5):686-91. DOI: 10.1086/500211
Source: PubMed

ABSTRACT Human salmonellosis occurs mainly as a result of handling or consuming contaminated food products, with a small percentage of cases being related to other, less well-defined exposures, such as contact with companion animals and natural pet treats. The increasing popularity of raw food diets for companion animals is another potential pet-associated source of Salmonella organisms; however, no confirmed cases of human salmonellosis have been associated with these diets. Pets that consume contaminated pet treats and raw food diets can be colonized with Salmonella organisms without exhibiting clinical signs, making them a possible hidden source of contamination in the household. Pet owners can reduce their risk of acquiring Salmonella organisms by not feeding natural pet treats and raw food diets to their pets, whereas individuals who investigate cases of salmonellosis or interpret surveillance data should be aware of these possible sources of Salmonella organisms.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this review is to clarify the definition of "natural" as it pertains to commercial pet food, and summarize the scientific findings related to natural ingredients in pet foods and natural diets on the impact of pet health and physiology. The term "natural", when used to market commercial pet foods or pet food ingredients in the U.S., has been defined by the Association of American Feed Control Officials and requires, at minimum, that the pet food be preserved with natural preservatives. However, pet owners may consider natural as something different than the regulatory definition. The natural pet food trend has focused on the inclusion of whole ingredients, including meats, fruits, and vegetables; avoiding ingredients perceived as heavily processed, including refined grains, fiber sources and by-products; and feeding according to ancestral or instinctual nutritional philosophies. Current scientific evidence supporting nutritional benefits of natural pet food products is limited to evaluations of dietary macronutrient profiles, fractionation of ingredients, and the processing of ingredients and final product. Domestic cats select a macronutrient profile (52% of metabolizable energy from protein) similar to the diet of wild cats. Dogs have evolved much differently in their ability to metabolize carbohydrates, and select a diet lower in protein (30% of metabolizable energy from protein) than the diet of wild wolves. The inclusion of whole food ingredients in natural pet foods as opposed to fractionated ingredients may result in higher nutrient concentrations, including phytonutrients. Additionally, the processing of commercial pet food can impact digestibility, nutrient bioavailability, and safety, which are particularly important considerations with new product formats in the natural pet food category. Future opportunities exist to better understand the effect of natural diets on health and nutrition outcomes, and to better integrate sustainable practices in the production of natural pet foods.
    Journal of Animal Science 07/2014; 92(9). DOI:10.2527/jas.2014-7789 · 1.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Salmonella causes about one million illnesses annually in the United States. Although most infections result from foodborne exposures, animal contact is an important mode of transmission. We investigated a case of Salmonella enterica serotype Enteritidis (SE) sternal osteomyelitis in a previously healthy child who cared for two recently deceased guinea pigs (GPs). A case was defined as SE pulsed-field gel electrophoresis (PFGE) XbaI pattern JEGX01.0021, BlnI pattern JEGA26.0002 (outbreak strain) infection occurring during 2010 in a patient who reported GP exposure. To locate outbreak strain isolates, PulseNet and the US Department of Agriculture National Veterinary Service Laboratories (NVSL) databases were queried. Outbreak strain isolates underwent multilocus variable-number tandem repeat analysis (MLVA). Traceback and environmental investigations were conducted at homes, stores, and breeder or broker facilities. We detected 10 cases among residents of eight states and four NVSL GP outbreak strain isolates. One patient was hospitalized; none died. The median patient age was 9.5 (range, 1-61) years. Among 10 patients, two purchased GPs at independent stores, and three purchased GPs at different national retail chain (chain A) store locations; three were chain A employees and two reported GP exposures of unknown characterization. MLVA revealed four related patterns. Tracebacks identified four distributors and 92 sources supplying GPs to chain A, including one breeder potentially supplying GPs to all case-associated chain A stores. All environmental samples were Salmonella culture-negative. A definitive SE-contaminated environmental source was not identified. Because GPs can harbor Salmonella, consumers and pet industry personnel should be educated regarding risks.
    Vector borne and zoonotic diseases (Larchmont, N.Y.) 05/2014; 14(6). DOI:10.1089/vbz.2013.1506 · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), in collaboration with the Food Emergency Response Network (FERN) and its Microbiology Cooperative Agreement Program (MCAP) laboratories, conducted a study to evaluate the prevalence of selected microbial organisms in various types of pet foods. The goal of this blinded study was to help the Center for Veterinary Medicine prioritize potential future pet food-testing efforts. The study also increased the FERN laboratories' screening capabilities for foodborne pathogens in animal feed matrices, since such pathogens may also be a significant health risk to consumers who come into contact with pet foods. Six U.S. Food and Drug Administration FERN MCAP laboratories analyzed approximately 1056 samples over 2 years. Laboratories tested for Salmonella, Listeria, Escherichia coli O157:H7 enterohemorrhagic E. coli, and Shiga toxin-producing strains of E. coli (STEC). Dry and semimoist dog and cat foods purchased from local stores were tested during Phase 1. Raw dog and cat foods, exotic animal feed, and jerky-type treats purchased through the Internet were tested in Phase 2. Of the 480 dry and semimoist samples, only 2 tested positive: 1 for Salmonella and 1 for Listeria greyii. However, of the 576 samples analyzed during Phase 2, 66 samples were positive for Listeria (32 of those were Listeria monocytogenes) and 15 samples positive for Salmonella. These pathogens were isolated from raw foods and jerky-type treats, not the exotic animal dry feeds. This study showed that raw pet foods may harbor food safety pathogens, such as Listeria monocytogenes and Salmonella. Consumers should handle these products carefully, being mindful of the potential risks to human and animal health.
    Foodborne Pathogens and Disease 05/2014; 11(9). DOI:10.1089/fpd.2014.1748 · 2.28 Impact Factor


Available from
May 19, 2014