Asparagine 706 and Glutamate 183 at the Catalytic Site of Sarcoplasmic Reticulum Ca2+-ATPase Play Critical but Distinct Roles in E2 States

University of Cape Town, Kaapstad, Western Cape, South Africa
Journal of Biological Chemistry (Impact Factor: 4.57). 04/2006; 281(14):9471-81. DOI: 10.1074/jbc.M512371200
Source: PubMed


Mutants with alteration to Asn(706) of the highly conserved (701)TGDGVND(707) motif in domain P of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed for changes in transport cycle kinetics and binding of the inhibitors vanadate, BeF, AlF, and MgF. The fluorides likely mimic the phosphoryl group/P(i) in the respective ground, transition, and product states of phosphoenzyme hydrolysis (Danko, S., Yamasaki, K., Daiho, T., and Suzuki, H. (2004) J. Biol. Chem. 279, 14991-14998). Binding of BeF, AlF, and MgF was also studied for mutant Glu(183) --> Ala, where the glutamate of the (181)TGES(184) motif in domain A is replaced. Mutations of Asn(706) and Glu(183) have in common that they dramatically impede the function of the enzyme in E2 states, but have little effect in E1. Contrary to the Glu(183) mutant, in which E2P slowly accumulates (Clausen, J. D., Vilsen, B., McIntosh, D. B., Einholm, A. P., and Andersen, J. P. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 2776-2781), E2P formation was not detectable with the Asn(706) mutants. Differential sensitivities of the mutants to inhibition by AlF, MgF, and BeF made it possible to distinguish different roles of Asn(706) and Glu(183). Hence, Asn(706) is less important than Glu(183) for gaining the transition state during E2P hydrolysis but plays critical roles in stabilization of E2P ground and E2.P(i) product states and in the major conformational changes associated with the Ca(2)E1P --> E2P and E2 --> Ca(2)E1 transitions, which seem to be facilitated by interaction of Asn(706) with domain A.

5 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crystal structures have shown that the conserved TGES loop of the Ca2+-ATPase is isolated in the Ca2E1 state but becomes inserted in the catalytic site in E2 states. Here, we have examined the kinetics of the partial reaction steps of the transport cycle and the binding of the phosphoryl analogs BeF, AlF, MgF, and vanadate in mutants with alterations to the TGES residues. The mutations encompassed variation of size, polarity, and charge of the side chains. Differential effects on the Ca2E1P --> E2P, E2P --> E2, and E2 --> Ca2E1 reactions and the binding of the phosphoryl analogs were observed. In the E183D mutant, the E2P --> E2 dephosphorylation reaction proceeded at a rate as high as one-third that of the wild type, whereas it was very slow in the other Glu183 mutants, including E183Q, thus demonstrating the need for a negatively charged carboxylate group to catalyze dephosphorylation. By contrast, the Ca2E1P --> E2P transition was accomplished at a reasonable rate with glutamine in place of Glu183, but not with aspartate, indicating that the length of the Glu183 side chain, in addition to its hydrogen bonding potential, is critical for Ca2E1P --> E2P. This transition was also slowed in mutants with alteration to other TGES residues. The data provide functional evidence in support of the proposed role of Glu183 in activating the water molecule involved in the E2P --> E2 dephosphorylation and suggest a direct participation of the side chains of the TGES loop in the control and facilitation of the insertion of the loop in the catalytic site. The interactions of the TGES loop furthermore seem to facilitate its disengagement from the catalytic site during the E2 --> Ca2E1 transition.
    Journal of Biological Chemistry 11/2006; 281(42):31572-82. DOI:10.1074/jbc.M605194200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New models of the gastric H,K ATPase in the E1K and E2P states are presented as the first structures of a K+ counter-transport P2-type ATPase exhibiting ion entry and exit paths. Homology modeling was first used to generate a starting conformation from the srCa ATPase E2P form (PDB code 1wpg) that contains bound MgADP. Energy minimization of the model showed a conserved adenosine site but nonconserved polyphosphate contacts compared to the srCa ATPase. Molecular dynamics was then employed to expand the luminal entry sufficiently to allow access of the rigid K+ competitive naphthyridine inhibitor, Byk99, to its binding site within the membrane domain. The new E2P model had increased separation between transmembrane segments M3 through M8, and addition of water in this space showed not only an inhibitor entry path to the luminal vestibule but also a channel leading to the ion binding site. Addition of K+ to the hydrated channel with molecular dynamics modeling of ion movement identified a pathway for K+ from the lumen to the ion binding site to give E2K. A K+ exit path to the cytoplasm operating during the normal catalytic cycle is also proposed on the basis of an E1K homology model derived from the E12Ca2+ form of the srCa ATPase (PDB code 1su4). Autodock analyses of the new E2P model now correctly discriminate between high- and low-affinity K+ competitive inhibitors. Finally, the expanded luminal vestibule of the E2P model explains high-affinity ouabain binding in a mutant of the H,K ATPase [Qiu et al. (2005) J. Biol. Chem. 280, 32349-32355].
    Biochemistry 05/2007; 46(18):5398-417. DOI:10.1021/bi062305h · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ATP-sensitive potassium (K(ATP)) channel couples glucose metabolism to insulin secretion in pancreatic beta-cells. It comprises regulatory sulfonylurea receptor 1 and pore-forming Kir6.2 subunits. Binding and/or hydrolysis of Mg-nucleotides at the nucleotide-binding domains of sulfonylurea receptor 1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. We report here the first purification and functional characterization of sulfonylurea receptor 1. We also compared the ATPase activity of sulfonylurea receptor 1 with that of the isolated nucleotide-binding domains (fused to maltose-binding protein to improve solubility). Electron microscopy showed that nucleotide-binding domains purified as ring-like complexes corresponding to approximately 8 momomers. The ATPase activities expressed as maximal turnover rate [in nmol P(i).s(-1).(nmol protein)(-1)] were 0.03, 0.03, 0.13 and 0.08 for sulfonylurea receptor 1, nucleotide-binding domain 1, nucleotide-binding domain 2 and a mixture of nucleotide-binding domain 1 and nucleotide-binding domain 2, respectively. Corresponding K(m) values (in mm) were 0.1, 0.6, 0.65 and 0.56, respectively. Thus sulfonylurea receptor 1 has a lower K(m) than either of the isolated nucleotide-binding domains, and a lower maximal turnover rate than nucleotide-binding domain 2. Similar results were found with GTP, but the K(m) values were lower. Mutation of the Walker A lysine in nucleotide-binding domain 1 (K719A) or nucleotide-binding domain 2 (K1385M) inhibited the ATPase activity of sulfonylurea receptor 1 by 60% and 80%, respectively. Beryllium fluoride (K(i) 16 microm), but not MgADP, inhibited the ATPase activity of sulfonylurea receptor 1. In contrast, both MgADP and beryllium fluoride inhibited the ATPase activity of the nucleotide-binding domains. These data demonstrate that the ATPase activity of sulfonylurea receptor 1 differs from that of the isolated nucleotide-binding domains, suggesting that the transmembrane domains may influence the activity of the protein.
    FEBS Journal 08/2007; 274(14):3532-44. DOI:10.1111/j.1742-4658.2007.05879.x · 4.00 Impact Factor
Show more

Similar Publications