Plasma levels of receptor activator of nuclear factor-κB ligand and osteoprotegerin in patients with neuroblastoma

Laboratory for Pathophysiology, Istituti Ortopedici Rizzoli, Bologna, Italy.
International Journal of Cancer (Impact Factor: 5.01). 07/2006; 119(1):146-51. DOI: 10.1002/ijc.21783
Source: PubMed

ABSTRACT Earlier reports showed that the balance between receptor activator of nuclear factor-kappaB ligand (RANKL) and its decoy-receptor osteoprotegerin (OPG) plays an important role in the pathogenesis of metastatic osteolysis induced by neuroblastoma cells. In this study, we investigated whether circulating levels of OPG, RANKL and their ratio were associated to the presence of osteolytic lesions in advanced neuroblastoma, as well as whether they provided additional information on the severity and prognosis of the disease. Plasma levels of RANKL and OPG were measured in 54 newly diagnosed neuroblastomas; 27 of them showed metastatic disease (stage IV), including 19 bone dissemination. Thirty-five children who were admitted to the pediatric department for minor surgical problems served as control group. OPG was significantly lower in all patients compared with controls, while RANKL levels were significantly increased in advanced neuroblastoma. OPG-to-RANKL ratio decreased in stage-IV patients, and particularly in those who had bone metastases. The diagnostic accuracy of the OPG-to-RANKL ratio in discriminating the presence of osteolytic lesions was not confirmed statistically. OPG correlated significantly with other prognostic factors, namely, ferritin and neurone-specific enolase. In addition, an inverse relationship was found between OPG and event-free survival, and it was more significant in patients who had bone metastasis. This pilot study confirms that the production of OPG and RANKL is disregulated in neuroblastoma. Although the OPG-to-RANKL ratio does not have a predictive value in detecting bone metastasis, the measurement of the previously mentioned markers could be useful in decisions regarding the use of adjuvant therapies.


Available from: Paolo Paolucci, Dec 02, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB.
    10/2014; DOI:10.1016/j.jbo.2014.10.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTS: To improve the therapy of advanced neuroblastoma (NB), it is critical to develop animal models that mimic NB bone metastases. Unlike the human disease, NB xenograft models rarely metastasize spontaneously to bone from the orthotopic site of primary tumor growth. METHODS: Single-cell suspensions of SY5Y, KCNR NB cells were injected directly into the femur of nude mice. Radiological and histological analyses and immunohistochemistry analyses were performed to characterize these osseous NB models. SY5Y and KCNR result in osteolytic responses. RESULTS: We have detected osteoprotegerin, receptor activator of nuclear factor kappa B ligand, parathyroid hormone-related protein, and endothelin-1, proteins associated with bone growth and osteolysis, and C-X-C chemokine receptor type 4 (CXCR4) involved in tumor growth and tumor cell migration in the NB cells grown in the bone. CONCLUSIONS: These animal models can be used to study biological interactions, pathways, and potential therapeutic targets and also to evaluate new agents for treatment and prevention of NB bone metastasis.
    Child s Nervous System 09/2012; DOI:10.1007/s00381-012-1909-3 · 1.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Particle-induced osteolysis is caused by an imbalance in bone resorption and formation, often leading to loss of implant fixation. Bone remodeling biomarkers may be useful for identification of osteolysis and studying pathogenesis, but interpretation of biomarker data could be confounded if local osteolysis engenders systemic bone remodeling. Our goal was to determine if remote bone remodeling contributes to biomarker levels. Serum concentrations of eight biomarkers and bone remodeling rates at local (femur), contiguous (tibia), and remote (humerus and lumbar vertebra) sites were evaluated in a rat model of particle-induced osteolysis. Serum CTX-1, cathepsin K, PINP, and OPG were elevated and osteocalcin was suppressed in the osteolytic group, but RANKL, TRAP 5b, and sclerostin were not affected at the termination of the study at 12 weeks. The one marker tested longitudinally (CTX-1) was elevated by 3 weeks. We found increased bone resorption and decreased bone formation locally, subtle differences in contiguous sites, but no differences remotely at 12 weeks. Thus, the skeletal response to local particle challenge was not systemic, implying that the observed differences in serum biomarker levels reflect differences in local remodeling. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
    Journal of Orthopaedic Research 07/2014; 32(7). DOI:10.1002/jor.22607 · 2.97 Impact Factor