Effect of steroid milieu on gonadotropin-releasing hormone-1 neuron firing pattern and luteinizing hormone levels in male mice.

Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.
Biology of Reproduction (Impact Factor: 3.45). 06/2006; 74(5):931-7. DOI: 10.1095/biolreprod.105.049619
Source: PubMed

ABSTRACT GnRH neuronal function is regulated by gonadal hormone feedback. In males, testosterone can act directly or be converted to either dihydrotestosterone (DHT) or estradiol (E2). We examined central steroid feedback by recording firing of green fluorescent protein (GFP)-identified GnRH neurons in brain slices from male mice that were intact, castrated, or castrated and treated with implants containing DHT, E2, or E2 + DHT. Castration increased LH levels. DHT or E2 alone partially suppressed LH, whereas E2 + DHT reduced LH to intact levels. Despite the inhibitory actions on LH, the combination of E2 + DHT increased GnRH neuron activity relative to other treatments, reflected in mean firing rate, amplitude of peaks in firing rate, and area under the curve of firing rate vs. time. Cluster8 was used to identify peaks in firing activity that may be correlated with hormone release. Castration increased the frequency of peaks in firing rate. Treatment with DHT failed to reduce frequency of these peaks. In contrast, treatment with E2 reduced peak frequency to intact levels. The frequency of peaks in firing rate was intermediate in animals treated with E2 + DHT, perhaps suggesting the activating effects of this combination partially counteracts the inhibitory actions of E2. These data indicate that E2 mediates central negative feedback in males primarily by affecting the pattern of GnRH neuron activity, and that androgens combined with estrogens have a central activating effect on GnRH neurons. The negative feedback induced by E2 + DHT to restore LH to intact levels may mask an excitatory central effect of this combination.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to the widely accepted images of the Golgi apparatus as a cup-like shape, the Golgi in pituitary gonadotropes is organized as a spherical shape in which the outer and inner faces are cis- and trans-Golgi elements, respectively. At the center of the spherical Golgi, a pair of centrioles is situated as a microtubule-organizing center from which radiating microtubules isotropically extend toward the cell periphery. This review focuses on the significance of the characteristic organization of the Golgi and microtubule network in gonadotropes, considering the roles of microtubule-dependent membrane transport in the formation and maintenance of the Golgi structure. Because the highly symmetrical organization of the Golgi is possibly perturbed in response to experimental treatments of gonadotropes, monitoring of the Golgi structure in gonadotropes under various experimental conditions will be a novel in vivo approach to elucidate the biogenesis of the Golgi apparatus.
    Molecular and Cellular Endocrinology 10/2013; DOI:10.1016/j.mce.2013.10.003 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic ovary syndrome (PCOS) is a common endocrinopathy with elusive origins. A clinically heterogeneous disorder, PCOS is likely to have multiple etiologies comprised of both genetic and environmental factors. Reproductive neuroendocrine dysfunction involving increased frequency and amplitude of gonadotropin-releasing hormone (GnRH) release, as reflected by pulsatile luteinizing hormone (LH) secretion, is an important pathophysiologic component in PCOS. Whether this defect is primary or secondary to other changes in PCOS is unclear, but it contributes significantly to ongoing reproductive dysfunction. This review highlights recent work in animal models, with a particular emphasis on the mouse, demonstrating the ability of pre- and postnatal steroidal and metabolic factors to drive changes in GnRH/LH pulsatility and GnRH neuron function consistent with the observed abnormalities in PCOS. This work has begun to elucidate how a complex interplay of ovarian, metabolic, and neuroendocrine factors culminates in this syndrome.
    Frontiers in Neuroendocrinology 04/2014; DOI:10.1016/j.yfrne.2014.04.002 · 7.58 Impact Factor
  • Clinical Endocrinology News 01/2008; 3(9):32-32. DOI:10.1016/S1558-0164(08)70366-3