Article

Effect of steroid milieu on gonadotropin-releasing hormone-1 neuron firing pattern and luteinizing hormone levels in male mice.

Department of Internal Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.
Biology of Reproduction (Impact Factor: 3.45). 06/2006; 74(5):931-7. DOI: 10.1095/biolreprod.105.049619
Source: PubMed

ABSTRACT GnRH neuronal function is regulated by gonadal hormone feedback. In males, testosterone can act directly or be converted to either dihydrotestosterone (DHT) or estradiol (E2). We examined central steroid feedback by recording firing of green fluorescent protein (GFP)-identified GnRH neurons in brain slices from male mice that were intact, castrated, or castrated and treated with implants containing DHT, E2, or E2 + DHT. Castration increased LH levels. DHT or E2 alone partially suppressed LH, whereas E2 + DHT reduced LH to intact levels. Despite the inhibitory actions on LH, the combination of E2 + DHT increased GnRH neuron activity relative to other treatments, reflected in mean firing rate, amplitude of peaks in firing rate, and area under the curve of firing rate vs. time. Cluster8 was used to identify peaks in firing activity that may be correlated with hormone release. Castration increased the frequency of peaks in firing rate. Treatment with DHT failed to reduce frequency of these peaks. In contrast, treatment with E2 reduced peak frequency to intact levels. The frequency of peaks in firing rate was intermediate in animals treated with E2 + DHT, perhaps suggesting the activating effects of this combination partially counteracts the inhibitory actions of E2. These data indicate that E2 mediates central negative feedback in males primarily by affecting the pattern of GnRH neuron activity, and that androgens combined with estrogens have a central activating effect on GnRH neurons. The negative feedback induced by E2 + DHT to restore LH to intact levels may mask an excitatory central effect of this combination.

0 Followers
 · 
55 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Androgens exert significant organizational and activational effects on the nervous system and behavior. Despite the fact that female mammals generally produce low levels of androgens, relative to the male of the same species, increasing evidence suggests that androgens can exert profound effects on the normal physiology and behavior of females during fetal, neonatal, and adult stages of life. This review examines the effects of exposure to androgens at three stages of development--as an adult, during early postnatal life and as a fetus, on reproductive hormone secretions in female rats. We examine the effects of androgen exposure both as a model of neuroendocrine sexual differentiation and with respect to the role androgens play in the normal female. We then discuss the hypothesis that androgens may cause epigenetic modification of estrogen target genes in the brain. Finally we consider the clinical consequences of excess androgen exposure in women.
    Hormones and Behavior 06/2008; 53(5):673-92. DOI:10.1016/j.yhbeh.2007.12.013 · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The brain controls fertility through release of gonadotropin-releasing hormone (GnRH), but the mechanisms underlying action potential patterning and GnRH release are not understood. We investigated whether GnRH neurons exhibit afterdepolarizing potentials (ADPs) and whether these are modified by reproductive state. Whole-cell current-clamp recordings of GnRH neurons in brain slices from ovariectomized mice revealed a slow ADP (sADP) after action potentials generated by brief current injection. Generating two or four spikes enhanced sADP amplitude and duration. sADP amplitude was not affected by blocking selected neurotransmitter/neuromodulator receptors, delayed-rectifier potassium channels, calcium-dependent cation channels, or hyperpolarization-activated cation channels but was halved by the calcium channel blocker cadmium and abolished by tetrodotoxin. Cadmium also reduced peak latency. Intrinsic mechanisms underlying the sADP were investigated using voltage-clamp protocols simulating action potential waveforms. A single action potential produced an inward current, which increased after double and quadruple stimulation. Cadmium did not affect current amplitude but reduced peak latency. Pretreatment with blockers of calcium-activated potassium currents (I(KCa)) reproduced this shift and blocked subsequent cadmium-induced changes, suggesting cadmium changes latency indirectly by blocking I(KCa). Tetrodotoxin abolished the inward current, suggesting that it is carried by sodium. In contrast, I(KCa) blockers increased the inward current, indicating that I(KCa) may oppose generation of the sADP. Strong sADPs were suprathreshold, generating repetitive spontaneous firing. I(ADP), sADP, and excitability were enhanced by in vivo estradiol, which triggers a preovulatory surge of GnRH release. Physiological feedback modification of this inward current and resulting sADP may modulate action potential firing and subsequent GnRH release.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 12/2006; 26(46):11961-73. DOI:10.1523/JNEUROSCI.3171-06.2006 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic ovary syndrome (PCOS) is a common endocrinopathy with elusive origins. A clinically heterogeneous disorder, PCOS is likely to have multiple etiologies comprised of both genetic and environmental factors. Reproductive neuroendocrine dysfunction involving increased frequency and amplitude of gonadotropin-releasing hormone (GnRH) release, as reflected by pulsatile luteinizing hormone (LH) secretion, is an important pathophysiologic component in PCOS. Whether this defect is primary or secondary to other changes in PCOS is unclear, but it contributes significantly to ongoing reproductive dysfunction. This review highlights recent work in animal models, with a particular emphasis on the mouse, demonstrating the ability of pre- and postnatal steroidal and metabolic factors to drive changes in GnRH/LH pulsatility and GnRH neuron function consistent with the observed abnormalities in PCOS. This work has begun to elucidate how a complex interplay of ovarian, metabolic, and neuroendocrine factors culminates in this syndrome.
    Frontiers in Neuroendocrinology 04/2014; DOI:10.1016/j.yfrne.2014.04.002 · 7.58 Impact Factor