Urogenital carcinogenesis in female CD1 mice induced by in utero arsenic exposure is exacerbated by postnatal diethylstilbestrol treatment.

Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at National Institute of Environmental Health Sciences, PO Box 12233, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.
Cancer Research (Impact Factor: 9.28). 03/2006; 66(3):1337-45. DOI: 10.1158/0008-5472.CAN-05-3530
Source: PubMed

ABSTRACT Transplacental inorganic arsenic carcinogenicity, together with postnatal exposure to diethylstilbestrol or tamoxifen, was studied. Pregnant CD1 mice received 85 ppm arsenic in the drinking water from gestation days 8 to 18 and were allowed to give birth. Groups (n = 35) of female offspring were injected s.c. on postpartum days 1 through 5 with diethylstilbestrol (2 microg/pup/d) or tamoxifen (10 microg/pup/d) and observed for 90 weeks. Arsenic alone induced some urogenital system tumors, including mostly benign tumors of the ovary and uterus, and adrenal adenoma. Diethylstilbestrol alone induced some tumors (primarily cervical) but when given after in utero arsenic, it greatly enhanced urogenital tumor incidence, multiplicity, and progression. For instance, compared with the incidence of urogenital malignancies in the control (0%), arsenic alone (9%), and diethylstilbestrol alone (21%) groups, arsenic plus diethylstilbestrol acted synergistically, inducing a 48% incidence of malignant urogenital tumors. Of the urogenital tumors induced by arsenic plus diethylstilbestrol, 80% were malignant, and 55% were multiple site. Arsenic plus diethylstilbestrol increased ovarian, uterine, and vaginal tumors, and urinary bladder proliferative lesions, including three transitional cell carcinomas. Tamoxifen alone did not increase urogenital tumors or affect arsenic-induced neoplasia but did increase arsenic-induced uroepithelial proliferative lesions. Uterine and bladder carcinoma induced by arsenic plus diethylstilbestrol greatly overexpressed estrogen receptor-alpha (ER-alpha) and pS2, an estrogen-regulated gene. In neonatal uteri, prenatal arsenic increased ER-alpha expression and enhanced estrogen-related gene expression induced by postnatal diethylstilbestrol. Thus, arsenic acts with estrogens to enhance production of female mouse urogenital cancers.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to toxicants leads to cumulative molecular changes that over time increase a subject's risk of developing urothelial carcinoma (UC). To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic exposed subjects, UC patients and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time dependent manner after arsenic treatment and cellular morphology was changed. In soft agar assay, colonies were observed only in arsenic treated cells and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in invasion assay were observed only in arsenic treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were down-regulated in arsenic exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P=0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC=0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early UC detection. Copyright © 2015, American Association for Cancer Research.
    Cancer Prevention Research 01/2015; DOI:10.1158/1940-6207.CAPR-14-0251 · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs). Cells were exposed to 1-10 μg/ml and 10-100 μg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 μg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs.
    01/2013; 9(2):29-36.
  • Archive für Toxikologie 09/2014; 88(11). DOI:10.1007/s00204-014-1369-5 · 5.08 Impact Factor