Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate.

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2006; 281(13):8582-90. DOI: 10.1074/jbc.M509043200
Source: PubMed

ABSTRACT The relative importance of the different proteolytic sites in mammalian proteasomes in protein degradation has not been studied systematically. Nevertheless, it is widely assumed that inhibition of the chymotrypsin-like site, the primary target of the proteasome inhibitors used in research and cancer therapy, reflects the degree of inhibition of protein breakdown. Here we demonstrate that selective inactivation of the chymotrypsin-like site reduced degradation of model proteins by pure 26 S proteasomes by only 11-50% and decreased only slightly the breakdown of proteins in HeLa cells. Inactivation of the caspase-like site decreased breakdown of model proteins by 12-22% and of the trypsin-like site by 3-35%. The relative contributions of these different sites depended on the protein substrate, and the importance of the trypsin-like sites depended on the substrate's content of basic residues. Simultaneous inhibition of the chymotrypsin-like and the caspase- or trypsin-like sites was needed to reduce degradation by >50%. Thus, 1) all three types of active sites contribute significantly to protein breakdown, 2) their relative importance varies widely with the substrate, 3) assaying the chymotrypsin-like activity overestimates the actual reduction in protein degradation, and 4) inhibition of multiple sites is required to markedly decrease proteolysis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunoproteasomes are alternative forms of proteasomes specialized in the generation of MHC class I antigenic peptides and important for efficient cytokine production. We have identified a new biochemical property of 26S immunoproteasomes, namely the ability to hydrolyze basic proteins at greatly increased rates compared to constitutive proteasomes. This enhanced degradative capacity is specific for basic polypeptides, since substrates with a lower content in lysine and arginine residues are hydrolyzed at comparable rates by constitutive and immunoproteasomes. Crucially, selective inhibition of the immunoproteasome tryptic subunit β2i strongly reduces degradation of basic proteins. Therefore, our data demonstrate the rate limiting function of the proteasomal trypsin-like activity in controlling turnover rates of basic protein substrates and suggest new biological roles for immunoproteasomes in maintaining cellular homeostasis by rapidly removing a potentially harmful excess of free histones that can build up under different pathophysiological conditions.
    Biochimica et biophysica acta. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteasome inhibition is associated with substantial antitumor effects in preclinical models of multiple myeloma (MM) as well as in patients. However, results of recent clinical trials to evaluate the effect of the proteasome inhibitor Bortezomib (Velcade(®), also called PS-341) in MM patients have shown limited activity when used as a single agent. This underscores the need to find new efficacious and less toxic proteasome inhibitors. Recently, carfilzomib was approved for the treatment of refractory/relapsed MM and several new agents have been introduced into the clinic, including marizomib and MLN9708, and trials investigating these second-generation proteasome inhibitors have demonstrated promising results. We have recently synthesized a novel proteasome inhibitor, BU-32, and tested its growth inhibitory effects in different human MM cells including RPMI8226, MM.1S, MM.1R, and U266. In this study, we evaluate the efficacy of the novel proteasome inhibitor BU-32 (NSC D750499) using an in vitro MM model. BU-32 exhibits strong cytotoxicity in a panel of MM cell lines-RPMI8226, MM1S, MM1R, and U266. In addition, we demonstrate by proteasome inhibition assay that BU-32 potently inhibits the chymotryptic- and caspase-like activities of the 26S proteasome. We further show from Annexin V-FITC binding studies that BU-32, like Bortezomib, induces apoptosis in a panel of MM cell lines but the effect is more pronounced with BU-32-treated cells. Invasion assay with the MM.1S cell line indicates that BU-32 inhibits the invasiveness of myeloma cells. Results from our studies using real-time PCR array analyses show that BU-32 effectively downregulates an array of angiogenesis and inflammatory markers. Our results suggest that BU-32 might be a potential chemotherapeutic agent with promising antitumor activity for the treatment of MM.
    Cancer Chemotherapy and Pharmacology 04/2014; · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the design, synthesis, and biological evaluation of peptidomimetic boronates as inhibitors of the 20S proteasome, a validated target in the treatment of multiple myeloma. The synthesized compounds showed a good inhibitory profile against the ChT-L activity of 20S proteasome. Compounds bearing a β-alanine residue at the P2 position were the most active, that is, 3-ethylphenylamino and 4-methoxyphenylamino (R)-1-{3-[4-(substituted)-2-oxopyridin-1(2H)-yl]propanamido}-3-methylbutylboronic acids (3 c and 3 d, respectively), and these derivatives showed inhibition constants (Ki ) of 17 and 20 nM, respectively. In addition, they co-inhibited post glutamyl peptide hydrolase activity (3 c, Ki =2.57 μM; 3 d, Ki =3.81 μM). No inhibition was recorded against the bovine pancreatic α-chymotrypsin, which thus confirms the selectivity towards the target enzyme. Docking studies of 3 c and related inhibitors into the yeast proteasome revealed the structural basis for specificity. The evaluation of growth inhibitory effects against 60 human tumor cell lines was performed at the US National Cancer Institute. Among the selected compounds, 3 c showed 50 % growth inhibition (GI50 ) values at the sub-micromolar level on all cell lines.
    ChemMedChem 05/2014; · 2.84 Impact Factor