A genome-wide map of conserved microRNA targets in C. elegans.

Center for Comparative Functional Genomics, Department of Biology, New York University, New York, New York 10003, USA.
Current Biology (Impact Factor: 9.92). 04/2006; 16(5):460-71. DOI: 10.1016/j.cub.2006.01.050
Source: PubMed

ABSTRACT Metazoan miRNAs regulate protein-coding genes by binding the 3' UTR of cognate mRNAs. Identifying targets for the 115 known C. elegans miRNAs is essential for understanding their function.
By using a new version of PicTar and sequence alignments of three nematodes, we predict that miRNAs regulate at least 10% of C. elegans genes through conserved interactions. We have developed a new experimental pipeline to assay 3' UTR-mediated posttranscriptional gene regulation via an endogenous reporter expression system amenable to high-throughput cloning, demonstrating the utility of this system using one of the most intensely studied miRNAs, let-7. Our expression analyses uncover several new potential let-7 targets and suggest a new let-7 activity in head muscle and neurons. To explore genome-wide trends in miRNA function, we analyzed functional categories of predicted target genes, finding that one-third of C. elegans miRNAs target gene sets are enriched for specific functional annotations. We have also integrated miRNA target predictions with other functional genomic data from C. elegans.
At least 10% of C. elegans genes are predicted miRNA targets, and a number of nematode miRNAs seem to regulate biological processes by targeting functionally related genes. We have also developed and successfully utilized an in vivo system for testing miRNA target predictions in likely endogenous expression domains. The thousands of genome-wide miRNA target predictions for nematodes, humans, and flies are available from the PicTar website and are linked to an accessible graphical network-browsing tool allowing exploration of miRNA target predictions in the context of various functional genomic data resources.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term potentiation (LTP) is a form of synaptic plasticity that is an excellent model for the molecular mechanisms that underlie memory. LTP, like memory, is persistent, and both are widely believed to be maintained by a coordinated genomic response. Recently, a novel class of non-coding RNA, microRNA, has been implicated in the regulation of LTP. MicroRNA negatively regulate protein synthesis by binding to specific messenger RNA response elements. The aim of this review is to summarize experimental evidence for the proposal that microRNA play a major role in the regulation of LTP. We discuss a growing body of research which indicates that specific microRNA regulate synaptic proteins relevant to LTP maintenance, as well as studies that have reported differential expression of microRNA in response to LTP induction. We conclude that microRNA are ideally suited to contribute to the regulation of LTP-related gene expression; microRNA are pleiotropic, synaptically located, tightly regulated, and function in response to synaptic activity. The potential impact of microRNA on LTP maintenance as regulators of gene expression is enormous.
    Frontiers in Molecular Neuroscience 02/2015; 8:4. DOI:10.3389/fnmol.2015.00004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of animals to sense and respond to elevated temperature is essential for survival. Transcriptional control of the heat stress response has been much studied, whereas its posttranscriptional regulation by microRNAs (miRNAs) is not well understood. Here we analyzed the miRNA response to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress signaling that enables animals to robustly respond to the changing environment.
    Scientific Reports 03/2015; 5:8866. DOI:10.1038/srep08866 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-transcriptional gene regulation (PTGR) of mRNA turnover, localization and translation is mediated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). These regulators exert their effects by binding to specific sequences within their target mRNAs. Increasing evidence suggests that competition for binding is a fundamental principle of PTGR. Not only can miRNAs be sequestered and neutralized by the targets with which they interact through a process termed 'sponging', but competition between binding sites on different RNAs may also lead to regulatory crosstalk between transcripts. Here, we quantitatively model competition effects under physiological conditions and review the role of endogenous sponges for PTGR in light of the key features that emerge.
    Nature Reviews Genetics 12/2014; 16(2). DOI:10.1038/nrg3853 · 39.79 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014