Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals.

Melbourne Neuropsychiatry Centre and Department of Psychiatry, University of Melbourne, Australia.
Archives of General Psychiatry (Impact Factor: 13.77). 03/2006; 63(2):139-49. DOI: 10.1001/archpsyc.63.2.139
Source: PubMed

ABSTRACT Magnetic resonance imaging studies have identified hippocampal volume reductions in schizophrenia and amygdala volume enlargements in bipolar disorder, suggesting different medial temporal lobe abnormalities in these conditions. These studies have been limited by small samples and the absence of patients early in the course of illness.
To investigate hippocampal and amygdala volumes in a large sample of patients with chronic schizophrenia, patients with first-episode psychosis, and patients at ultra-high risk for psychosis compared with control subjects.
Cross-sectional comparison between patient groups and controls.
Individuals with chronic schizophrenia were recruited from a mental health rehabilitation service, and individuals with first-episode psychosis and ultra-high risk were recruited from the ORYGEN Youth Health Service. Control subjects were recruited from the community.
The study population of 473 individuals included 89 with chronic schizophrenia, 162 with first-episode psychosis, 135 at ultra-high risk for psychosis (of whom 39 subsequently developed a psychotic illness), and 87 controls.
Hippocampal, amygdala, whole-brain, and intracranial volumes were estimated on high-resolution magnetic resonance images and compared across groups, including first-episode subgroups. We used 1- and 2-way analysis of variance designs to compare hippocampal and amygdala volumes across groups, correcting for intracranial volume and covarying for age and sex. We investigated the effects of medication and illness duration on structural volumes.
Patients with chronic schizophrenia displayed bilateral hippocampal volume reduction. Patients with first-episode schizophrenia but not schizophreniform psychosis displayed left hippocampal volume reduction. The remaining first-episode subgroups had normal hippocampal volumes compared with controls. Amygdala volume enlargement was identified only in first-episode patients with nonschizophrenic psychoses. Patients at ultra-high risk for psychosis had normal baseline hippocampal and amygdala volumes whether or not they subsequently developed a psychotic illness. Structural volumes did not differ between patients taking atypical vs typical antipsychotic medications, and they remained unchanged when patients treated with lithium were excluded from the analysis.
Medial temporal structural changes are not seen until after the onset of a psychotic illness, and the pattern of structural change differs according to the type of psychosis. These findings have important implications for future neurobiological studies of psychotic disorders and emphasize the importance of longitudinal studies examining patients before and after the onset of a psychotic illness.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined hippocampal volume as a putative biomarker for psychotic illness in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) psychosis sample, contrasting manual tracing and semiautomated (FreeSurfer) region-of-interest outcomes. The study sample (n = 596) included probands with schizophrenia (SZ, n = 71), schizoaffective disorder (SAD, n = 70), and psychotic bipolar I disorder (BDP, n = 86); their first-degree relatives (SZ-Rel, n = 74; SAD-Rel, n = 62; BDP-Rel, n = 88); and healthy controls (HC, n = 145). Hippocampal volumes were derived from 3Tesla T1-weighted MPRAGE images using manual tracing/3DSlicer3.6.3 and semiautomated parcellation/FreeSurfer5.1,64bit. Volumetric outcomes from both methodologies were contrasted in HC and probands and relatives across the 3 diagnoses, using mixed-effect regression models (SAS9.3 Proc MIXED); Pearson correlations between manual tracing and FreeSurfer outcomes were computed. SZ (P = .0007-.02) and SAD (P = .003-.14) had lower hippocampal volumes compared with HC, whereas BDP showed normal volumes bilaterally (P = .18-.55). All relative groups had hippocampal volumes not different from controls (P = .12-.97) and higher than those observed in probands (P = .003-.09), except for FreeSurfer measures in bipolar probands vs relatives (P = .64-.99). Outcomes from manual tracing and FreeSurfer showed direct, moderate to strong, correlations (r = .51-.73, P < .05). These findings from a large psychosis sample support decreased hippocampal volume as a putative biomarker for schizophrenia and schizoaffective disorder, but not for psychotic bipolar I disorder, and may reflect a cumulative effect of divergent primary disease processes and/or lifetime medication use. Manual tracing and semiautomated parcellation regional volumetric approaches may provide useful outcomes for defining measurable biomarkers underlying severe mental illness.
    Schizophrenia Bulletin 02/2014; · 8.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several lines of evidence indicate that the risk of developing schizophrenia is significantly enhanced following postnatal exposure to environmental insults occurring during the critical periods of early central nervous system development. The hippocampus is a brain structure that has been associated with the neuropathology of schizophrenia. Neonatal epileptic seizures in rat pups can affect the construction of hippocampal networks. Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. PPI is the normal reduction in the startle response caused by a low intensity non-startling stimulus (prepulse) which is presented shortly before the startle stimulus (pulse). The aim of the present study was to investigate if prolonged epileptic seizures, occurring during postnatal brain development, alter prepulse inhibition (PPI) response of acoustic startle reflex and hippocampal volume of rats tested later in life (post-pubertal phase). Pilocarpine-induced status epilepticus (SE) was induced in postnatal days (PNDs) 7-9 in rat pups. On PND56, the animals were tested in the acoustic startle/PPI paradigm. Hippocampal volume was measured in histological brain slices using the Cavalieri's principle. Dorsal and ventral hippocampi were measured bilaterally. Our results demonstrate that animals subjected to SE presented deficits in PPI when tested in adulthood. Dorsal hippocampal volume was reduced in rats that experienced severe neonatal seizures.
    Neuroscience Letters 03/2014; · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alteration in normal hippocampal (HPC) function attributed to reduced parvalbumin (PV) expression has been consistently reported in schizophrenia patients and in animal models of schizophrenia. However, it is unclear whether there is an overall loss of interneurons as opposed to a reduction in activity-dependent PV content. Co-expression of PV and the constitutively expressed substance P (SP)-receptor protein has been utilized in other models to ascertain the degree of cell survival, as opposed to reduction in activity-dependent PV content, in the HPC. The present study measured the co-expression of PV and SP-receptors in the dentate and dorsal and ventral CA3 subregions of the HPC in the methylazoymethanol acetate (MAM) rat neurodevelopmental model of schizophrenia. In addition, these changes were compared at the post-natal day 27 (PND27) and post-natal day 240 (PND > 240) time points. Brains from PND27 and PND > 240 MAM (n = 8) and saline (SAL, n = 8) treated offspring were immunohistochemically processed for the co-expression of PV and SP-receptors. The dorsal dentate, dorsal CA3 and ventral CA3 subregions of PND27 and PND > 240 MAM rats demonstrated significant reductions in PV but not SP-receptor expression, signifying a loss of PV-content. In contrast, in the ventral dentate the co-expression of PV and SP-receptors was significantly reduced only in PND > 240 MAM animals, suggesting a reduction in cell number. While MAM-induced reduction of PV content occurs in CA3 of dorsal and ventral HPC, the most substantial loss of interneuron number is localized to the ventral dentate of PND > 240 animals. The disparate loss of PV in HPC subregions likely impacts intra-HPC network activity in MAM rats.
    The International Journal of Neuropsychopharmacology 04/2014; · 5.64 Impact Factor