Specific Requirement for Bax, Not Bak, in Myc-induced Apoptosis and Tumor Suppression in Vivo

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States
Journal of Biological Chemistry (Impact Factor: 4.57). 05/2006; 281(16):10890-5. DOI: 10.1074/jbc.M513655200
Source: PubMed


Bax and Bak comprise the mitochondrial gateway for apoptosis induced by diverse stimuli. Loss of both bax and bak is necessary to block cell death induced by such stimuli, indicating a great degree of functional overlap between Bax and Bak. Apoptosis is the major intrinsic pathway that limits the oncogenic potential of Myc. Using a switchable mouse model of Myc-induced apoptosis in pancreatic beta cells, we have shown that Myc induces apoptosis in vivo exclusively through Bax but not Bak. Furthermore, blockade of Myc-induced apoptosis by the inactivation of Bax, but not Bak, eliminates all restraints to the oncogenic potential of Myc, allowing the rapid and synchronous progression of invasive, angiogenic tumors.

5 Reads
  • Source
    • "Indeed, even brief inactivation of Myc appears to offer potential therapeutic value [35-37], fueling the contemporary concept of “oncogene addiction” – an hypothesized acquired dependency in which tumor cells become dependent on the aberrantly sustained flux running through the oncogenic lesions. Given the capacity of Myc to drive and maintain both angiogenesis and local inflammation and stromal remodeling, at least some of this dependency appears to be due to collapse of the tumor microenvironment when oncogenic Myc is turned off [38]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The biological programs of vertebrates exhibit a remarkable degree of functional degeneracy, adaptive compensation and robustness, to preserve homeostasis and generate reproducible phenotypic outputs irrespective of variations in signal strength, noise and quality. Cancers are difficult to treat not only because they are so mechanistically diverse but also because they adapt or evolve in response to any pharmacological elective pressure we impose upon them. Hence, an ideal cancer drug target would exert a function both necessary for cancer cell survival and functionally non-redundant, rendering it impossible for tumor cells to compensate for, or evolve independence from, the inhibitory effect of any drug aimed at that target. In this review, we discuss the unique, non-degenerate and highly pleiotropic role played by Myc in coordinating, engaging and maintaining the diverse intracellular and extracellular programs required for cell proliferation in vivo. These properties make Myc a compelling candidate cancer drug target, at least in principle: an assertion recently reinforced by new in vivo genetic data.
    Oncotarget 12/2011; 2(12):1307-13. DOI:10.18632/oncotarget.396 · 6.36 Impact Factor
  • Source
    • "The anti-apoptotic function of BclxL seen in Rip7-BclxL/pIns-MYC-ERTAM (RM) double transgenic mice indicates that MYC-induced apoptosis is related to the Bax/Bak-mediated intrinsic mitochondrial pathway [27,66]. Activation of this intrinsic apoptotic pathway was evident at the transcriptional level in β-cells by continued 2-fold increased expression of Bax and the somatic Cytochrome c gene (Cycs) from 16 hours onwards after MYC activation, and up-regulation of the mitochondrial respiratory gene for Endonuclease G, Endog, after only 4 hours of MYC activation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor MYC is a critical regulator of diverse cellular processes, including both replication and apoptosis. Differences in MYC-regulated gene expression responsible for such opposing outcomes in vivo remain obscure. To address this we have examined time-dependent changes in global gene expression in two transgenic mouse models in which MYC activation, in either skin suprabasal keratinocytes or pancreatic islet β-cells, promotes tissue expansion or involution, respectively. Consistent with observed phenotypes, expression of cell cycle genes is increased in both models (albeit enriched in β-cells), as are those involved in cell growth and metabolism, while expression of genes involved in cell differentiation is down-regulated. However, in β-cells, which unlike suprabasal keratinocytes undergo prominent apoptosis from 24 hours, there is up-regulation of genes associated with DNA-damage response and intrinsic apoptotic pathways, including Atr, Arf, Bax and Cycs. In striking contrast, this is not the case for suprabasal keratinocytes, where pro-apoptotic genes such as Noxa are down-regulated and key anti-apoptotic pathways (such as Igf1-Akt) and those promoting angiogenesis are up-regulated. Moreover, dramatic up-regulation of steroid hormone-regulated Kallikrein serine protease family members in suprabasal keratinocytes alone could further enhance local Igf1 actions, such as through proteolysis of Igf1 binding proteins. Activation of MYC causes cell growth, loss of differentiation and cell cycle entry in both β-cells and suprabasal keratinocytes in vivo. Apoptosis, which is confined to β-cells, may involve a combination of a DNA-damage response and downstream activation of pro-apoptotic signalling pathways, including Cdc2a and p19(Arf)/p53, and downstream targets. Conversely, avoidance of apoptosis in suprabasal keratinocytes may result primarily from the activation of key anti-apoptotic signalling pathways, particularly Igf1-Akt, and induction of an angiogenic response, though intrinsic resistance to induction of p19(Arf) by MYC in suprabasal keratinocytes may contribute.
    BMC Genomics 09/2011; 12(1):476. DOI:10.1186/1471-2164-12-476 · 3.99 Impact Factor
  • Source
    • "Support for the biological relevance of such a Bak inhibitor model comes indirectly from cancer biology. There, disruption of the bax gene impairs myc-induced islet cell depeletion upon myc expression and facilitates tumorigenesis in a myc-driven pancreatic β-cell tumor model, whereas genetic inactivation of bak has no impact (Dansen et al., 2006). In fact, loss of Bax is a frequent event in human cancer, whereas Bak expression persists in most cancers. "
    [Show abstract] [Hide abstract]
    ABSTRACT: B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)-only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1-Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.
    The Journal of Cell Biology 12/2007; 179(4):701-15. DOI:10.1083/jcb.200703040 · 9.83 Impact Factor
Show more