Article

Protein kinase Czeta attenuates hypoxia-induced proliferation of fibroblasts by regulating MAP kinase phosphatase-1 expression.

Developmental Lung Biology Research Laboratory, Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
Molecular Biology of the Cell (Impact Factor: 4.55). 05/2006; 17(4):1995-2008. DOI: 10.1091/mbc.E05-09-0869
Source: PubMed

ABSTRACT We have previously found that hypoxia stimulates proliferation of vascular fibroblasts through Galphai-mediated activation of ERK1/2. Here, we demonstrate that hypoxia also activates the atypical protein kinase Czeta (PKCzeta) isozyme and stimulates the expression of ERK1/2-specific phosphatase, MAP kinase phosphatase-1 (MKP-1), which attenuates ERK1/2-mediated proliferative signals. Replication repressor activity is unique to PKCzeta because the blockade of classical and novel PKC isozymes does not affect fibroblast proliferation. PKCzeta is phosphorylated upon prolonged (24 h) exposure to hypoxia, whereas ERK1/2, the downstream kinases, are maximally activated in fibroblasts exposed to acute (10 min) hypoxia. However, PKCzeta blockade results in persistent ERK1/2 phosphorylation and marked increase in hypoxia-induced replication. Similarly prolonged ERK1/2 phosphorylation and increase in hypoxia-stimulated proliferation are also observed upon blockade of MKP-1 activation. Because of the parallel suppressive actions of PKCzeta and MKP-1 on ERK1/2 phosphorylation and proliferation, the role of PKCzeta in the regulation of MKP-1 expression was evaluated. PKCzeta attenuation reduces MKP-1 expression, whereas PKCzeta overexpression increases MKP-1 levels. In conclusion, our results indicate for the first time that hypoxia activates PKCzeta, which acts as a terminator of ERK1/2 activation through the regulation of downstream target, MKP-1 expression and thus serves to limit hypoxia-induced proliferation of fibroblasts.

0 Bookmarks
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to determine the role of FIH-1 in regulating HIF-1 activity in the nucleus pulposus (NP) cells, and the control of this regulation by binding and sequestration of FIH-1 by Mint3. FIH-1 and Mint3 were both expressed in the NP, and were shown to strongly co-localize within the cell nucleus. While both mRNA and protein expression of FIH-1 decreased in hypoxia, only Mint3 protein levels were hypoxia sensitive. Overexpression of FIH-1 was able to reduce HIF-1 function as seen by changes in activities of HRE-luciferase reporter and HIF-1α-CTAD and HIF-2α-TAD. Moreover, co-transfection of either full-length Mint3 or the N-terminus of Mint3 abrogated FIH-1-dependent reduction in HIF-1 activity under both normoxia and hypoxia. Nuclear levels of FIH-1 and Mint3 decreased in hypoxia, and use of specific nuclear import and export inhibitors clearly showed that cellular compartmentalization of overexpressed FIH-1 was critical for its regulation of HIF-1 activity in NP cells. Interestingly, microarray results after stable silencing of FIH-1 showed no significant changes in transcripts of classical HIF-1 target genes. However, expression of several other transcripts, including those of Notch pathway changed in FIH-1 silenced cells. Moreover, co-transfection of Notch-ICD could restore suppression of HIF1-TAD activity by exogenous FIH-1. Taken together, these results suggest that possibly due to low endogenous levels and/or preferential association with substrates such as Notch, FIH-1 activity does not represent a major mechanism by which NP cells control HIF-1-dependent transcription, a testament to their adaptation to a unique hypoxic niche.
    Journal of Biological Chemistry 05/2014; 289(30). DOI:10.1074/jbc.M114.565101 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CaMKs are a widely distributed family of kinases with multiple and often cell specific effects on intracellular signal transduction pathway. In endothelial cells, it has been recognized a role for CamKII in several pathways such as eNOS activation and nitric oxide production. It is not clear though, whether CaMKII interfere with other endothelial cell functions such as ERK activation and cell proliferation. We explored this issue in primary cultured rat endothelial cells and we evaluated the effect on endothelial cell proliferation and DNA synthesis. CaMKII inhibition through Cantide, conducted into the cell through Antoennapedia (ANT-CN), showed positive effects on proliferation and H(3)-thimdine incorporation similar to insulin stimulation. Accordingly, both CaMKII pharmacological inhibition and silencing through shRNA produced activation of the p44/42 MAPK. These observations leaded to the hypothesis that CamKII could regulate p44/p42 by interfering with specific ERK phosphatases. Indeed, we found that CaMKII interacts and protect the dual specific phosphatase MKP-1 from proteasome mediated degradation while this complex is disrupted by CaMKII inhibitors. This study reveals that CaMKII, besides phosphorylation through the known ras-raf-mek pathway, can regulate also dephosphorylation of p44/p42 by modulation of MKP-1 level. This novel finding opens to a novel scenario in regulation of endothelial cell functions.
    Cellular Signalling 07/2014; DOI:10.1016/j.cellsig.2014.06.009 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic retinopathy is one of the most common complications in patients with diabetes and affects ~75% of them within 15 years of the onset of the disease. Activation of protein kinase C (PKC) is a key feature of diabetes mellitus and may be involved in the pathogenesis of diabetic retinopathy. The present study aimed to examine the translocation of protein kinase C (PKC) isoforms, which are triggered by high an moderately high glucose levels as well as hypoxic conditions. The underlying cell mechanisms of PKC translocation in primary cultured human retinal endothelial cells (HRECs) were also investigated. The expression levels of PKC isoforms were assessed using western blot analysis. Cell proliferation was determined using the MTT assay and DNA synthesis was assessed by bromodeoxyuridine incorporation. Translocation of PKC isoforms was examined by western blot analysis and immunofluorescence. The expression of PKC α, βI, βII, δ and ε was detected, while PKC ζ was not detected in HRECs. The results of the present study were consistent with the findings of a previous study by our group, reporting that moderately high glucose levels and hypoxia, but not high glucose levels, significantly increased cell proliferation. It was demonstrated that the PKC δ isoform was translocated from the cytosol to the membrane only under moderately high glucose conditions, while PKC α and ε isoforms were translocated from the cytosol to the membrane at high glucose conditions. In addition, PKC βI was translocated under all three conditions. Translocation of PKC βII was comparable among all groups. Furthermore, rottlerin, an inhibitor of PKC δ, blocked cell proliferation, which was induced by moderately high glucose levels, but not by hypoxia. Ro32‑0432, an inhibitor of PKC α, βI and ε, did not significantly affect proliferation of HRECs in all treatment groups. In conclusion, the present study suggested that PKC α, βI, βII, δ and ε were expressed in primary cultured HRECs, whereas PKC ζ was not. Cell proliferation induced by moderately high glucose concentrations was associated with translocation of the PKC δ isoform; however, hypoxic conditions did not induce translocation.
    Molecular Medicine Reports 03/2014; 9(5). DOI:10.3892/mmr.2014.2049 · 1.48 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
May 21, 2014