Article

Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappa B pathways

Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2006; 281(17):11792-804. DOI: 10.1074/jbc.M509292200
Source: PubMed

ABSTRACT The functional significance of protease-activated receptors (PARs) in endothelial cells is largely undefined, and the intracellular consequences of their activation are poorly understood. Here, we show that the serine protease thrombin, a PAR-1-selective peptide (TFLLRN), and SLIGKV (PAR-2-selective peptide) induce cyclooxygenase-2 (COX-2) protein and mRNA expression in human endothelial cells without modifying COX-1 expression. COX-2 induction was accompanied by sustained production of 6-keto-PGF1alpha, the stable hydrolysis product of prostacyclin, and this was inhibited by indomethacin and the COX-2-selective inhibitor NS398. PAR-1 and PAR-2 stimulation rapidly activated both ERK1/2 and p38MAPK, and pharmacological blockade of MEK with either PD98059 or U0126 or of p38MAPK by SB203580 or SB202190 strongly inhibited thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha formation. Thrombin and peptide agonists of PAR-1 and PAR-2 increased luciferase activity in human umbilical vein endothelial cells infected with an NF-kappaB-dependent luciferase reporter adenovirus, and this, as well as PAR-induced 6-keto-PGF1alpha synthesis, was inhibited by co-infection with adenovirus encoding wild-type or mutated (Y42F) IkappaBalpha. Thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha generation were markedly attenuated by the NF-kappaB inhibitor PG490 and partially inhibited by the proteasome pathway inhibitor MG-132. Activation of PAR-1 or PAR-2 promoted nuclear translocation and phosphorylation of p65-NF-kappaB, and thrombin-induced but not PAR-2-induced p65-NF-kappaB phosphorylation was reduced by inhibition of MEK or p38MAPK. Activation of PAR-4 by AYPGKF increased phosphorylation of ERK1/2 and p38MAPK without modifying NF-kappaB activation or COX-2 induction. Our data show that PAR-1 and PAR-2, but not PAR-4, are coupled with COX-2 expression and sustained endothelial production of vasculoprotective prostacyclin by mechanisms that depend on ERK1/2, p38MAPK, and IkappaBalpha-dependent NF-kappaB activation.

Download full-text

Full-text

Available from: Tom D Carter, Jun 28, 2015
0 Followers
 · 
72 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E(2), which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease.
    British Journal of Pharmacology 10/2009; 158(4):1017-33. DOI:10.1111/j.1476-5381.2009.00449.x · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is growing evidence that increased expression of cyclooxygenase-2 (COX-2) in the lungs of patients is a key event in the pathogenesis of lung diseases. In this study, we investigated the involvement of the extracellular signal-regulated kinase (ERK), IkappaB kinase alpha/beta (IKKalpha/beta), and nuclear factor-kappaB (NF-kappaB) signaling pathways in thrombin-induced COX-2 expression in human lung fibroblasts (WI-38). Treatment of WI-38 cells with thrombin caused increased COX-2 expression in a concentration- and time-dependent manner. Treatment of WI-38 cells with PD 98059 (2-[2-amino-3-methoxyphenyl]-4H-1-benzopyran-4-one, a MEK inhibitor) inhibited thrombin-induced COX-2 expression and COX-2-luciferase activity. Stimulation of cells with thrombin caused an increase in ERK phosphorylation in a time-dependent manner. In addition, treatment of WI-38 cells with Bay 117082, an IkappaB phosphorylation inhibitor, and pyrrolidine dithiocarbamate (PDTC), an NF-kappaB inhibitor, inhibited thrombin-induced COX-2 expression. The thrombin-induced increase in COX-2-luciferase activity was also blocked by the dominant negative IkappaBalpha mutant (IkappaBalphaM). Treatment of WI-38 cells with thrombin induced IKKalpha/beta and IkappaBalpha phosphorylation, IkappaBalpha degradation, and kappaB-luciferase activity. The thrombin-mediated increases in IKKalpha/beta phosphorylation and kappaB-luciferase activity were inhibited by PD 98059. Taken together, these results suggest that the ERK-dependent IKKalpha/beta/NF-kappaB signaling pathway plays an important role in thrombin-induced COX-2 expression in human lung fibroblasts.
    European journal of pharmacology 08/2009; 618(1-3):70-5. DOI:10.1016/j.ejphar.2009.07.007 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis.
    Biochimica et Biophysica Acta 10/2008; 1783(9):1563-75. DOI:10.1016/j.bbamcr.2008.03.016 · 4.66 Impact Factor