Article

Training-induced functional activation changes in dual-task processing: an FMRI study.

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61810, USA.
Cerebral Cortex (Impact Factor: 8.31). 02/2007; 17(1):192-204. DOI: 10.1093/cercor/bhj137
Source: PubMed

ABSTRACT Although training-induced changes in brain activity have been previously examined, plasticity associated with executive functions remains understudied. In this study, we examined training-related changes in cortical activity during a dual task requiring executive control. Two functional magnetic resonance imaging (fMRI) sessions, one before training and one after training, were performed on both a control group and a training group. Using a region-of-interest analysis, we examined Time x Group and Time x Group x Condition interactions to isolate training-dependent changes in activation. We found that most regions involved in dual-task processing before training showed reductions in activation after training. Many of the decreases in activation were correlated with improved performance on the task. We also found an area in the dorsolateral prefrontal cortex that showed an increase in activation for the training group for the dual-task condition, which was also correlated with improved performance. These results are discussed in relation to the efficacy of training protocols for modulating attention and executive functions, dual-task processing, and fMRI correlates of plasticity.

0 Bookmarks
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cognition is important for locomotion and gait decline increases the risk for morbidity, mortality, cognitive decline, and dementia. Yet, the neural correlates of gait are not well established, because most neuroimaging methods cannot image the brain during locomotion. Imagined gait protocols overcome this limitation. This study examined the behavioral and neural correlates of a new imagined gait protocol that involved imagined walking (iW), imagined talking (iT), and imagined walking-while-talking (iWWT). In Experiment 1, 82 cognitively-healthy older adults (M = 80.45) walked (W), iW, walked while talking (WWT) and iWWT. Real and imagined walking task times were strongly correlated, particularly real and imagined dual-task times (WWT and iWWT). In Experiment 2, 33 cognitively-healthy older adults (M = 73.03) iW, iT, and iWWT during functional magnetic resonance imaging. A multivariate Ordinal Trend (OrT) Covariance analysis identified a pattern of brain regions that: (1) varied as a function of imagery task difficulty (iW, iT and iWWT), (2) involved cerebellar, precuneus) were associated with kinesthetic imagery ratings and behavioral performance during actual WWT. This is the first study to compare the behavioral and neural correlates of imagined gait in single and dual-task situations, an issue that is particularly relevant to elderly populations. These initial findings encourage further research and development of this imagined gait protocol as a tool for improving gait and cognition among the elderly. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 02/2014; · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multitasking (MT) constitutes engaging in two or more cognitive activities at the same time. MT-training improves performance on untrained MT tasks and alters the functional activity of the brain during MT. However, the effects of MT-training on neural mechanisms beyond MT-related functions are not known. We investigated the effects of 4 weeks of MT-training on regional gray matter volume (rGMV) and functional connectivity during rest (resting-FC) in young human adults. MT-training was associated with increased rGMV in three prefrontal cortical regions (left lateral rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC), and left inferior frontal junction), the left posterior parietal cortex, and the left temporal and lateral occipital areas as well as decreased resting-FC between the right DLPFC and an anatomical cluster around the ventral anterior cingulate cortex (ACC). Our findings suggest that participation in MT-training is as a whole associated with task-irrelevant plasticity (i.e., neural changes are not limited to certain specific task conditions) in regions and the network that are assumed to play roles in MT as well as diverse higher-order cognitive functions. We could not dissociate the effects of each task component and the diverse cognitive processes involved in MT because of the nature of the study, and these remain to be investigated. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 12/2013; · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.
    PLoS ONE 01/2014; 9(6):e99222. · 3.53 Impact Factor

Full-text

View
52 Downloads
Available from
May 26, 2014