Training-induced functional activation changes in dual-task processing: an FMRI study.

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61810, USA.
Cerebral Cortex (Impact Factor: 8.31). 02/2007; 17(1):192-204. DOI: 10.1093/cercor/bhj137
Source: PubMed

ABSTRACT Although training-induced changes in brain activity have been previously examined, plasticity associated with executive functions remains understudied. In this study, we examined training-related changes in cortical activity during a dual task requiring executive control. Two functional magnetic resonance imaging (fMRI) sessions, one before training and one after training, were performed on both a control group and a training group. Using a region-of-interest analysis, we examined Time x Group and Time x Group x Condition interactions to isolate training-dependent changes in activation. We found that most regions involved in dual-task processing before training showed reductions in activation after training. Many of the decreases in activation were correlated with improved performance on the task. We also found an area in the dorsolateral prefrontal cortex that showed an increase in activation for the training group for the dual-task condition, which was also correlated with improved performance. These results are discussed in relation to the efficacy of training protocols for modulating attention and executive functions, dual-task processing, and fMRI correlates of plasticity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Working memory (WM) capacity is associated with various emotional aspects, including states of depression and stress, reactions to emotional stimuli, and regulatory behaviors. We have previously investigated the effects of WM training (WMT) on cognitive functions and brain structures. However, the effects of WMT on emotional states and related neural mechanisms among healthy young adults remain unknown. In the present study, we investigated these effects in young adults who underwent WMT or received no intervention for 4 weeks. Before and after the intervention, subjects completed self-report questionnaires related to their emotional states and underwent scanning sessions in which brain activities related to negative emotions were measured. Compared with controls, subjects who underwent WMT showed reduced anger, fatigue, and depression. Furthermore, WMT reduced activity in the left posterior insula during tasks evoking negative emotion, which was related to anger. It also reduced activity in the left frontoparietal area. These findings show that WMT can reduce negative mood and provide new insight into the clinical applications of WMT, at least among subjects with preclinical-level conditions.
    Frontiers in Systems Neuroscience 10/2014; 8:200.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Executive processing in dual tasks is primarily associated with activation of the lateral prefrontal cortex (lPFC), which is demonstrated in functional imaging studies (e.g., Szameitat et al., 2006). However, a causal relation between lPFC activity and executive functions in dual tasks has not been demonstrated so far. Here, we used anodal transcranial direct current stimulation (atDCS [1 mA, 20 min] vs. sham stimulation [1 mA, 30 s]) over the left inferior frontal junction under conditions of random and fixed task order in dual tasks as well as in single tasks in healthy young individuals (Experiment 1). We found that atDCS, if administered simultaneously to the task, improved performance in random-order dual tasks, but not in fixed-order dual tasks and single tasks. Moreover, dual-task performance under random-order conditions did not improve if atDCS was applied prior to the task performance. The identical procedure in Experiment 2 showed no difference in dual-task performance under random-task order conditions when we compared cathodal tDCS (ctDCS) with sham stimulation. Our findings suggest that dual-task performance is causally related to lPFC activation under conditions that require task-order decisions and high demands on executive functioning. Subsequent studies may now explore if atDCS leads to sustained improvements parallel to the training of dual tasks.
    Neuropsychologia 12/2014; In Press, Uncorrected Proof. · 3.45 Impact Factor


Available from
May 26, 2014