The effect of genome length on ejection forces in bacteriophage lambda

Department of Physics, California Institute of Technology, Pasadena, 91125, USA.
Virology (Impact Factor: 3.28). 06/2006; 348(2):430-6. DOI: 10.1016/j.virol.2006.01.003
Source: PubMed

ABSTRACT A variety of viruses tightly pack their genetic material into protein capsids that are barely large enough to enclose the genome. In particular, in bacteriophages, forces as high as 60 pN are encountered during packaging and ejection, produced by DNA bending elasticity and self-interactions. The high forces are believed to be important for the ejection process, though the extent of their involvement is not yet clear. As a result, there is a need for quantitative models and experiments that reveal the nature of the forces relevant to DNA ejection. Here, we report measurements of the ejection forces for two different mutants of bacteriophage lambda, lambdab221cI26 and lambdacI60, which differ in genome length by approximately 30%. As expected for a force-driven ejection mechanism, the osmotic pressure at which DNA release is completely inhibited varies with the genome length: we find inhibition pressures of 15 atm and 25 atm, for the short and long genomes, respectively, values that are in agreement with our theoretical calculations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The XXIIIrd Phage/Virus Assembly (PVA) meeting returned to its birthplace in Lake Arrowhead, CA on September 8-13, 2013 (Fig. 1). The original meeting occurred in 1968, organized by Bob Edgar (Caltech, Pasadena, CA USA), Fred Eiserling (University of California, Los Angeles, Los Angeles, CA USA) and Bill Wood (Caltech, Pasadena, CA USA). The organizers of the 2013 meeting were Bill Gelbart (University of California, Los Angeles, Los Angeles, CA USA) and Jack Johnson (Scripps Research Institute, La Jolla, CA USA). This meeting specializes in an egalitarian format. Students are distinguished from senior faculty primarily by the signs of age. With the exception of historically based introductory talks, all talks were allotted the same time and freedom. This tradition began when the meeting was phage-only and has been continued now that all viruses are included. Many were the animated conversations about basic questions. New and international participants were present, a sign that the field has significant attraction, as it should, based on details below. The meeting was also characterized by a sense of humor and generally good times, a chance to both enjoy the science and forget the funding malaise to which many participants are exposed. I will present some of the meeting content, without attempting to be comprehensive.
    Bacteriophage 01/2014; 4(1):e27272. DOI:10.4161/bact.27272
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda׳s life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
    Virology 03/2015; 479-480. DOI:10.1016/j.virol.2015.02.010 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex type 1 virus (HSV-1) and bacteriophage λ capsids undergo considerable structural changes during self-assembly and DNA packaging. The initial steps of viral capsid self-assembly require weak, non-covalent interactions between the capsid subunits to ensure free energy minimization and error-free assembly. In the final stages of DNA packaging, however, the internal genome pressure dramatically increases, requiring significant capsid strength to withstand high internal genome pressures of tens of atmospheres. Our data reveal that the loosely formed capsid structure is reinforced post-assembly by the minor capsid protein UL25 in HSV-1 and gpD in bacteriophage λ. Using atomic force microscopy nano-indentation analysis, we show that the capsid becomes stiffer upon binding of UL25 and gpD due to increased structural stability. At the same time the force required to break the capsid increases by ∼70% for both herpes and phage. This demonstrates a universal and evolutionarily conserved function of the minor capsid protein: facilitating the retention of the pressurized viral genome in the capsid. Since all eight human herpesviruses have UL25 orthologs, this discovery offers new opportunities to interfere with herpes replication by disrupting the precise force balance between the encapsidated DNA and the capsid proteins crucial for viral replication.
    Nucleic Acids Research 07/2014; 42(14). DOI:10.1093/nar/gku634 · 8.81 Impact Factor


1 Download
Available from