The role of the endoplasmic reticulum in the accumulation of beta-amyloid peptide in Alzheimer's disease.

Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine, Grand Forks, 58202, USA.
Current Molecular Medicine (Impact Factor: 3.61). 03/2006; 6(1):119-33.
Source: PubMed

ABSTRACT Increased cerebral levels of Abeta(42) peptide, either as soluble or aggregated forms, are suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). The identification of genetic defects in presenilins and beta-amyloid precursor protein (beta-APP) has led to the development of cellular and animal models that have helped in understanding aspects of the pathophysiology of the inherited early onset forms of AD. However, the majority of AD cases are sporadic with no clear or defined genetic basis. While genetic mutations are responsible for the accumulation of Abeta in early onset AD, the causative factors for accumulation of Abeta in the late onset AD forms are not known. This raises the possibility that Abeta accumulation in the absence of genetic mutations might result from abnormalities that indirectly affect Abeta production or its clearance. Currently, there is no consensus as to what are the mechanisms by which Abeta accumulates or as to which mechanisms underlie Abeta-induced neuronal death in AD. In this review, I will first describe the physiological role of endoplasmic reticulum in the cell and review some of the data supporting dysfunction of the endoplasmic reticulum as an early event leading to Abeta accumulation in familial AD. I will also discuss the possible role of oxidative stress and other factors as contributors in Abeta accumulation by reducing the clearance of Abeta from the endoplasmic reticulum. Finally, I will summarize data that show the endoplasmic reticulum stress as a mechanism underlying exogenous Abeta neurotoxicity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is one of the most common types of progressive dementias. The typical neuropathological changes in AD include extracellular senile plaques, intracellular neurofibrillary tangles, and loss of neurons. The pathogenetic mechanism of this disease is not comprehensively understood yet. Recently, endoplasmic reticulum stress (ER stress) has been considered as a potential event involved in AD development. Some AD-related factors, such as misfolded protein and Ca(2+) depletion, could disrupt the homeostasis of ER lumen. In AD, the aggregated amyloid-beta peptide (Abeta) could induce ER stress in an assembly dependent way. The presenilin has been identified as a Ca(2+) channel. Mutations of presenilin could change the balance of Ca(2+) in ER lumen and thus disrupts the ER homeostasis. Furthermore, the ER stress could lead to cellular disorders like inflammation. Through activating the expression of inflammatory factors, ER stress triggers inflammatory response in AD pathology. Herein, we reviewed the recent progress of ER stress-induced unfolded protein response (UPR) and the roles of ER stress in AD pathological process.
    Neurological Research 10/2014; 37(4):1743132814Y0000000448. DOI:10.1179/1743132814Y.0000000448 · 1.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer's disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer's disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1-40 and Abeta1-42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.
    Cell Stress and Chaperones 03/2014; 19(6). DOI:10.1007/s12192-014-0506-7 · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) is the principal organelle responsible for the proper folding/processing of nascent proteins and perturbed ER function leads to a state known as ER stress. Mammalian cells try to overcome ER stress through a set of protein signalling pathways and transcription factors termed the unfolded protein response (UPR). However, under unresolvable ER stress conditions, the UPR is hyperactivated inducing cell dysfunction and death. The accumulation of misfolded proteins in the brain of Alzheimer's disease (AD) patients suggests that alterations in ER homeostasis might be implicated in the neurodegenerative events that characterize this disorder. This review discusses the involvement of ER stress in the pathogenesis of AD, focusing the processing and trafficking of the AD-related amyloid precursor protein (APP) during disease development. The potential role of ER as a therapeutic target in AD will also be debated.
    Biochimica et Biophysica Acta 05/2014; DOI:10.1016/j.bbadis.2014.05.003 · 4.66 Impact Factor