Vitamin D receptor is required to control gastrointestinal immunity in IL‐10 knockout mice

Immunology Research Laboratories, The Pathobioilogy and Nutrition Graduate Programs, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA.
Immunology (Impact Factor: 3.74). 04/2006; 117(3):310-8. DOI: 10.1111/j.1365-2567.2005.02290.x
Source: PubMed

ABSTRACT The vitamin D receptor (VDR) is a nuclear receptor expressed in a number of different cells of the immune system. This study was performed to determine the effect of VDR deficiency on immune function and inflammation of the gastrointestinal tract in a model of inflammatory bowel disease, namely interleukin-10 (IL-10) knockout mice. IL-10 knockout mice were generated which either could or could not respond to vitamin D (double IL-10/VDR knockout; DKO). The distribution and function of lymphocytes in both the primary and secondary lymphoid organs were compared and determined as a function of the severity of intestinal inflammation. DKO mice had normal thymic development and peripheral T-cell numbers at 3 weeks of age, but a week after intestinal disease was detected the thymus was dysplastic with a reduction in cellularity. The atrophy was coupled with increased apoptosis. The spleen weight of DKO mice increased as a result of the accumulation of red blood cells; however, there was a 50% reduction in the numbers of T and B cells. Conversely, the mesenteric lymph nodes were enlarged and contained increased numbers of lymphocytes. The T cells from DKO mice were of a memory phenotype and were hyporesponsive to T-cell receptor stimulation. Colitis in the DKO mice was associated with local and high expression of IL-2, interferon-gamma, IL-1beta, tumour necrosis factor-alpha and IL-12. The primary and secondary lymphoid organs in DKO mice are profoundly altered as a consequence of the fulminating inflammation in the gastrointestinal tract. VDR expression is required for the T cells and other immune cells to control inflammation in the IL-10 KO mice.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most active vitamin D metabolite, 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is a pleiotropic hormone with wide regulatory actions. Classically, vitamin D deficiency was known to alter calcium and phosphate metabolism and bone biology. In addition, recent epidemiological and experimental studies support the association of vitamin D deficiency with a large variety of human diseases, and particularly with the high risk of colorectal cancer. By regulating the expression of many genes via several mechanisms, 1,25(OH)(2)D(3) induces differentiation, controls the detoxification metabolism and cell phenotype, sensitises cells to apoptosis and inhibits the proliferation of cultured human colon carcinoma cells. Consistently, 1,25(OH)(2)D(3) and several of its analogues decrease intestinal tumourigenesis in animal models. Molecular, genetic and clinical data in humans are scarce but they suggest that vitamin D is protective against colon cancer. Clearly, the available evidence warrants new, well-designed, large-scale trials to clarify the role of vitamin D in the prevention and/or therapy of this important neoplasia.
    Endocrine Related Cancer 03/2012; 19(3):R51-71. DOI:10.1530/ERC-11-0388 · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D is a fat-soluble steroid hormone, which is essential to health and for which epidemiological studies suggest a role in autoimmune disease, infections, cardiovascular disease and cancer. It is ingested in foods such as oily fish and supplements, so that average levels vary between countries, but most individuals worldwide make most of their vitamin D as a result of the effects of sun exposure on the skin. Many studies in different populations around the world have in recent years shown that sub-optimal levels of vitamin D (<70 nmol/L) are common. A series of epidemiological studies have suggested that low vitamin D levels increase the risk of cancers, particularly of the breast and gastrointestinal tracts, so that there has been much interest in understanding the effects of vitamin D on cancer cells. Vitamin D binds to the vitamin D receptor (VDR) resulting in transcription of a number of genes playing a role in inhibition of MAPK signalling, induction of apoptosis and cell-cycle inhibition, and therefore vitamin D has anti-proliferative and pro-apoptotic effects in cells of many lineages. It also has suppressive effects on adaptive immunity and is reported to promote innate immunity. Here we review data on vitamin D and melanoma. There are in vitro data, which suggest that vitamin D has the same anti-proliferative effects on melanoma cells as have been demonstrated in other cells. We have reported data to suggest that vitamin D levels at diagnosis have a role in determining outcome for melanoma patients. There is a curious relationship between melanoma risk and sun exposure where sunburn is causal but occupational sun exposure is not (at least in temperate climes). Seeking to understand this, we discuss data, which suggest (but by no means prove) that vitamin D might also have a role in susceptibility to melanoma. In conclusion, much remains unknown about vitamin D in general and certainly about vitamin D and melanoma. However, the effects of avoidance of suboptimal vitamin D levels on cancer cell proliferation are likely to be beneficial to the melanoma patient. The possible results of high vitamin D levels on the immune system remain unclear however and a source of some concern, but the data support the view that serum levels in the range 70-100 nmol/L might be a reasonable target for melanoma patients as much as for other members of the population.
    Molecular oncology 02/2011; 5(2):197-214. DOI:10.1016/j.molonc.2011.01.007 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the role of the extracellular signal regulated kinases (ERK) in 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3))-induced gene expression in the differentiated Caco-2 cells. 1,25(OH)(2)D(3)-regulated expression of the 25-hydroxyvitamin D, 24-hydroxylase (CYP24) gene (both natural gene and promoter construct) was strongly modulated by altering ERK activity (i.e., reduced by MEK inhibitors and dominant negative (dn) ERK1 and ERK2, activated by epidermal growth factor) but ERK inhibition had no effect on 1,25(OH)(2)D(3)-regulated expression of the transient receptor potential cation channel, subfamily V, member 6 (TRPV6). ERK5-mediated phosphorylation of the transcription factor Ets-1 enhanced 1,25(OH)(2)D(3)-mediated CYP24 gene transcription in proliferating but not differentiated Caco-2 cells due to reduced levels of ERK5 and Ets-1 (total and phosphoprotein levels) in differentiated cells. MEK inhibition reduced 1,25(OH)(2)D(3)-induced 3X-VDRE promoter activity but had no impact on the association of vitamin D receptor (VDR) with chromatin suggesting a role for co-activator recruitment in ERK-modulation of vitamin D-regulated CYP24 gene activation. Chromatin immunoprecipitation assays revealed that the ERK1/2 target, mediator 1 (MED1), is recruited to the CYP24, but not the TRPV6, promoter following 1,25(OH)(2)D(3) treatment. MED1 phosphorylation was sensitive to activators and inhibitors of the ERK1/2 signaling and MED1 siRNA reduced 1,25(OH)(2)D(3)-regulated human CYP24 promoter activity. This suggests ERK1/2 signaling enhances 1,25(OH)(2)D(3) effects on the CYP24 promoter by MED1-mediated events. Our data show that there are both promoter-specific and cell stage-specific roles for the ERK signaling pathway on 1,25(OH)(2)D(3)-mediated gene induction in enterocyte-like Caco-2 cells.
    Journal of Cellular Physiology 04/2009; 219(1):132-42. DOI:10.1002/jcp.21657 · 3.87 Impact Factor


1 Download
Available from

Similar Publications