Article

Expression of MHC II genes.

Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco 94143, USA.
Current topics in microbiology and immunology (Impact Factor: 3.47). 02/2005; 290:147-70.
Source: PubMed

ABSTRACT Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases.

Download full-text

Full-text

Available from: Nabila Jabrane-Ferrat, Jul 05, 2015
0 Followers
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in aging gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. Rhesus monkeys (n=34) from 3-23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites were obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with aging in healthy gingival tissues. In contrast, both adult and aging periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. These transcriptional changes suggest a response of healthy aging tissues through the class II pathway (i.e., endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intracellular microbial pathogens. This article is protected by copyright. All rights reserved.
    Journal Of Clinical Periodontology 12/2013; DOI:10.1111/jcpe.12212 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulatory factor X (RFX) family of transcription factors has been recently implicated in gene regulation during spermatogenesis. However, the relative expression of individual members during this developmental process is not completely characterized, particularly in the case of Rfx4, which has multiple transcript variants in the testis. We used reverse transcriptase-dependent real-time PCR, 5'-RACE cloning, and Western blotting to compare transcripts and protein levels for this family in cell populations from the three major phases of spermatogenesis (mitotic, meiotic, and haploid). Transcripts for Rfx1-4 were present at trace to low levels in spermatogonia prepared from 8-day-old mice. Transcripts for both Rfx2 and Rfx4 were elevated in mid-late pachytene spermatocytes; however, the dominant Rfx4 transcript present begins at a downstream exon and lacks the DNA binding domain. Transcripts for all four genes were elevated in early haploid cells (round spermatids). In these cells Rfx4 transcripts originate primarily from a newly described promoter with intron 1 but are expected to be translationally compromised due to a poorly situated start codon. Western blotting confirmed that RFX2 is greatly elevated beginning in meiosis and also confirmed that full-length RFX4 protein is not prevalent in mouse testis at any stage. These results imply that RFX2 is the most likely X box binding factor to influence novel gene expression during meiosis, that RFX1-3 may all play roles in haploid cells but that RFX4 is much less prevalent than implied by its high transcript levels.
    Gene Expression Patterns 08/2009; 9(7):515-9. DOI:10.1016/j.gep.2009.07.004 · 1.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inactivated parapoxvirus ovis (iPPVO) shows strong immunomodulatory activities in several species and is used in veterinary medicine as an immunostimulatory biological for the prevention and/or treatment of infectious diseases. In this study the immunostimulatory capacity of iPPVO on the innate immune system was investigated in vitro by the evaluation of induction of the oxidative burst and modulation of phagocytosis by canine blood leukocytes (polymorphonuclear cells and monocytes) of dogs. In addition, the activation of canine T lymphocytes was also studied. After stimulation with iPPVO the phagocytosis of FITC-labeled Listeria monocytogenes was increased in canine blood monocytes and neutrophils. Enhanced burst rates by canine monocytes stimulated with iPPVO were observed and the MHC-II expression on canine CD14+ monocytes was elevated following stimulation with iPPVO compared to the stabiliser control. Canine CD4+ T cells were activated for oligoclonal proliferation in response to iPPVO. This study shows that iPPVO is able to stimulate both phagocytotic and T-cell-dependent immune mechanisms in canine blood leukocytes.
    Veterinary Microbiology 02/2009; 137(3-4):260-7. DOI:10.1016/j.vetmic.2009.01.035 · 2.73 Impact Factor