Article

Transcriptional regulation of the human GD3 synthase gene expression in Fas-induced Jurkat T cells: a critical role of transcription factor NF-kappaB in regulated expression.

Systematic Proteomic Research Center, Korea Research Institute of Bioscience and Biotechnology, Yusong-Gu, Daejon 305-600, Korea.
Glycobiology (Impact Factor: 3.54). 06/2006; 16(5):375-89. DOI: 10.1093/glycob/cwj087
Source: PubMed

ABSTRACT The transcriptional regulation mechanisms involved in the up-regulation of Fas-induced GD3 synthase gene have not yet been elucidated. 5'-Rapid amplification of cDNA end (5'-RACE) using mRNA prepared from Fas-induced Jurkat T cells revealed the presence of multiple transcription start sites of human GD3 synthase gene, and the 5'-end analysis of the longest of its product showed that transcription started from 650 nucleotides upstream of the translational initiation site. Promoter analyses of the 5'-flanking region of the human GD3 synthase gene using luciferase gene reporter system showed strong promoter activity in Fas-induced Jurkat T cells. Deletion study revealed that the region from -1146 to -646 (A of the translational start ATG as position +1) was indispensable for the Fas response. This region lacks apparent TATA and CAAT boxes but contains putative binding sites for transcription factors c-Ets-1, cAMP-responsive element-binding (CREB) protein, activating protein 1 (AP-1), and NF-kappaB. Base-substitution experiment showed that only the NF-kappaB-binding site of putative binding sites is required for the maximal expression induced by Fas. Both DNase I footprint and electrophoretic mobility shift assays with the nuclear extract of Fas-induced Jurkat T cells revealed that NF-kappaB was bound specifically to the probe being mediated by its binding site in the promoter sequence. Taken together, these results indicate that NF-kappaB plays an essential role in the transcriptional activity of human GD3 synthase gene in Fas-induced Jurkat T cells. In addition, the translocation of NF-kappaB-binding protein to nucleus by Fas activation is also crucial for the increased expression of the GD3 synthase gene in Fas-activated Jurkat T cells.

0 Bookmarks
 · 
74 Views
  • Source
    Specialist Periodical Reports Carbohydrate Chemistry, 01/2012: pages 21-56;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polysialic acid (PSA), an α2,8-linked homopolymer of N-acetylneuraminic acid (Neu5Ac), is developmentally regulated and its expression is thought to be restricted to a few tissues in adults. Recently, we showed that two human pathogens expressed a derivative of PSA containing de-N-acetyl sialic acid residues (NeuPSA). Here we show that an epitope identified by the anti-NeuPSA monoclonal antibody, SEAM 3 (SEAM 3-reactive antigen or S3RA), is expressed in human melanomas, and also intracellularly in a human melanoma cell line (SK-MEL-28), a human T cell leukemia cell line (Jurkat), and two neuroblastoma cell lines (CHP-134 and SH-SY5Y). SEAM 3 binding induced apoptosis in the four cell lines tested. The unusual intracellular distribution of S3RA was similar to that described for the PSA polysialyltransferases, STX and PST, which are also expressed in the four cell lines used here. Interestingly, suppression of PST mRNA expression by transfection of SK-MEL-28 cells with PST-specific short interfering RNA (siRNA) resulted in decreased SEAM 3 binding. The results suggest further studies of the utility of antibodies such as SEAM 3 as therapeutic agents for certain malignancies.
    PLoS ONE 01/2011; 6(11):e27249. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in FenR-induced SH-SY5Y cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene showed that the -1146 to -646 region functions as the FenR-inducible promoter of hST8Sia I in SH-SY5Y cells. Site-directed mutagenesis indicated that the NF-&B binding site at -731 to -722 was crucial for the FenR-induced expression of hST8Sia I in SH-SY5Y cells. To investigate which signal transduction pathway was involved in FenR-stimulated induction of hST8Sia I in SH-SY5Y cells, we performed Western blot analysis using phospho-specific antibodies in order to measure their degree of regulatory phosphorylation. Phosphorylations of AKT and RelA (p65) subunit of NF- were significantly elevated in cytosolic and nuclear fractions of FenR-stimulated SH-SY5Y cells, respectively, than in control or DMSO-treated SH-SY5Y cells. These results suggest that FenR induce transcriptional up-regulation of hST8Sia I gene expression through translocation of RelA (p65) subunit of NF- to nucleus by AKT signal pathway in SH-SY5Y cells.
    Journal of Life Science. 01/2010; 20(9).

Full-text (2 Sources)

Download
7 Downloads
Available from
Jun 1, 2014